enteric methane; machine learning; prediction models; proxies for methane; Food Science; Animal Science and Zoology; Genetics
Abstract :
[en] Direct measurements of methane (CH4) from individual animals are difficult and expensive. Predictions based on proxies for CH4 are a viable alternative. Most prediction models are based on multiple linear regressions (MLR) and predictor variables that are not routinely available in commercial farms, such as dry matter intake (DMI) and diet composition. The use of machine learning (ML) algorithms to predict CH4 emissions from across-country heterogeneous data sets has not been reported. The objectives were to compare performances of ML ensemble algorithm random forest (RF) and MLR models in predicting CH4 emissions from proxies in dairy cows, and assess effects of imputing missing data points on prediction accuracy. Data on CH4 emissions and proxies for CH4 from 20 herds were provided by 10 countries. The integrated data set contained 43,519 records from 3,483 cows, with 18.7% missing data points imputed using k-nearest neighbor imputation. Three data sets were created, 3k (no missing records), 21k (missing DMI imputed from milk, fat, protein, body weight), and 41k (missing DMI, milk fat, and protein records imputed). These data sets were used to test scenarios (with or without DMI, imputed vs. nonimputed DMI, milk fat, and protein), and prediction models (RF vs. MLR). Model predictive ability was evaluated within and between herds through 10-fold cross-validation. Prediction accuracy was measured as correlation between observed and predicted CH4, root mean squared error (RMSE) and mean normalized discounted cumulative gain (NDCG). Inclusion of DMI in the model improved within and between-herd prediction accuracy to 0.77 (RMSE = 23.3%) and 0.58 (RMSE = 31.9%) in RF and to 0.50 (RMSE = 0.327) and 0.13 (RMSE = 42.71) in MLR, respectively than when DMI was not included in the predictive model. When missing DMI records were imputed, within and between-herd accuracy increased to 0.84 (RMSE = 18.5%) and 0.63 (RMSE = 29.9%), respectively. In all scenarios, RF models out-performed MLR models. Results suggest routinely measured variables from dairy farms can be used in developing globally robust prediction models for CH4 if coupled with state-of-the-art techniques for imputation and advanced ML algorithms for predictive modeling.
Disciplines :
Animal production & animal husbandry
Author, co-author :
Negussie, Enyew ; Animal Genomics and Breeding, Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland. Electronic address: enyew.negussie@luke.fi
González-Recio, Oscar ; Department of Animal Breeding, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA-CSIC), 28040 Madrid, Spain
Battagin, Mara ; Italian Brown Cattle Breeders' Association, Verona, Italy
Bayat, Ali-Reza ; Animal Nutrition, Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland
Boland, Tommy ; Agriculture and Food Science Centre, School of Agriculture and Food Science, University College Dublin, Belfield, Belfield, Dublin 4, Ireland
de Haas, Yvette ; Animal Breeding and Genomics, Wageningen University and Research, 6700 AH Wageningen, the Netherlands
Garcia-Rodriguez, Aser ; Department of Animal Production, NEIKER-Basque Institute for Agricultural Research and Development, 01192 Arkaute, Spain
Garnsworthy, Philip C ; School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom
Gengler, Nicolas ; Université de Liège - ULiège > Département GxABT > Ingénierie des productions animales et nutrition
Kreuzer, Michael ; ETH Zurich, Institute of Agricultural Sciences, Universitaetstrasse 2, 8092 Zurich, Switzerland
Kuhla, Björn ; Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology "Oskar Kellner," Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
Lassen, Jan ; VikingGenetics, Ebeltoftvej 16, 8960 Randers, Denmark
Peiren, Nico ; Institute for Agricultural and Fisheries Research (ILVO), Merelbeke, Belgium
Pszczola, Marcin ; Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wołynska 33, 60-637 Poznan, Poland
Schwarm, Angela ; Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway
Soyeurt, Hélène ; Université de Liège - ULiège > Département GxABT
Vanlierde, Amélie ; Productions in Agriculture Department, Walloon Agricultural Research Centre (CRA-W), BEL-5030 Gembloux, Belgium
Yan, Tianhai ; Livestock Production Science Branch, Agri-Food and Biosciences Institute, Hillsborough, Co. Down BT26 6DR, United Kingdom
Biscarini, Filippo ; National Research Council, Institute of Agricultural Biology and Biotechnology (CNR-IBBA), Via Bassini 15, 20133 Milan, Italy
Integrating heterogeneous across-country data for proxy-based random forest prediction of enteric methane in dairy cattle.
Alternative titles :
[fr] Intégration de données hétérogènes multi-pays pour confectionner un indicateur des émissions de méthane des vaches laitères au moyen d'une random forest
This paper is the result of the concerted effort of all participants and support from the networks of COST Action FA1302 “METHAGENE: Large-scale methane measurements on individual ruminants for genetic evaluations.” The authors thank all individuals and groups who have directly or indirectly contributed to this work; special thanks are due to the technical and financial support from the COST Action FA1302 of the European Union. In addition, all financial and technical supports from all participating countries and research centers involved in this work are greatly acknowledged. The authors have not stated any conflicts of interest.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Al-Jarrah, O.Y., Yoo, P.D., Muhaidat, S., Karagiannidis, G.K., Taha, K., Efficient machine learning for big data: A review. Big Data Research 2 (2015), 87–93 http://dx.doi.org/10.1016/j.bdr.2015.04.001.
Appuhamy, J.A.D.R.N., France, J., Kebreab, E., Models for predicting enteric methane emissions from dairy cows in North America, Europe, and Australia and New Zealand. Glob. Chang Biol. 22 (2016), 3039–3056 https://doi.org/10.1111/gcb.13339 27148862.
Bayat, A.R., Ventto, L., Kairenius, P., Stefański, T., Leskinen, H., Tapio, I., Negussie, E., Vilkki, J., Shingfield, K.J., Dietary forage to concentrate ratio and sunflower oil supplement alter rumen fermentation, ruminal methane emissions, and nutrient utilization in lactating cows. Transl. Anim. Sci. 1 (2017), 277–286 https://doi.org/10.2527/tas2017.0032 32704652.
Bell, M.J., Saunders, N., Wilcox, R.H., Homer, E.M., Goodman, J.R., Craigon, J., Garnsworthy, P.C., Methane emissions among individual dairy cows during milking quantified by eructation peaks or ratio with carbon dioxide. J. Dairy Sci. 97 (2014), 6536–6546 https://doi.org/10.3168/jds.2013-7889 25129498.
Benaouda, M., Martin, C., Li, X., Kebreab, E., Hristov, A.N., Yu, Z., Yáñez-Ruiz, D.R., Reynolds, C.K., Crompton, L.A., Dijkstra, J., Bannink, A., Schwarm, A., Kreuzer, M., McGee, M., Lund, P., Hellwing, A.L.F., Weisbjerg, M.R., Moate, P.J., Bayat, A.R., Shingfield, K.J., Peiren, N., Eugène, M., Evaluation of the performance of existing mathematical models predicting enteric methane emissions from ruminants: Animal categories and dietary mitigation strategies. Anim. Feed Sci. Technol., 255, 2019, 114207 https://doi.org/10.1016/j.anifeedsci.2019.114207.
Blaxter, K.L., Clapperton, J.L., Prediction of the amount of methane produced by ruminants. Br. J. Nutr. 19 (1965), 511–522 https://doi.org/10.1079/BJN19650046 5852118.
Blondel, M., Onogi, A., Iwata, H., Ueda, N., A ranking approach to genomic selection. PLoS One, 10, 2015, e0128570 https://doi.org/10.1371/journal.pone.0128570.
Boadi, D.A., Wittenberg, K.M., Scott, S.L., Burton, D., Buckley, K., Small, J.A., Ominski, K.H., Effect of low and high forage diet on enteric and manure pack greenhouse gas emissions from a feedlot. Can. J. Anim. Sci. 84 (2004), 445–453 https://doi.org/10.4141/A03-079.
Breiman, L., Random forests. Mach. Learn. 45 (2001), 5–32 https://doi.org/10.1023/A:1010933404324.
Cassandro, M., Animal breeding and climate change, mitigation and adaptation. J. Anim. Breed. Genet. 137 (2020), 121–122 https://doi.org/10.1111/jbg.12469 32072712.
Cassandro, M., Marcello, M., Stefanon, B., Genetic aspects of enteric methane emission in livestock ruminants. Ital. J. Anim. Sci. 12 (2013), 450–458 https://doi.org/10.4081/ijas.2013.e73.
Charmley, E., Williams, S.R.O., Moate, P.J., Hegarty, R.S., Herd, R.M., Oddy, V.H., Reyenga, P., Staunton, K.M., Anderson, A., Hannah, M.C., A universal equation to predict methane production of forage-fed cattle in Australia. Anim. Prod. Sci. 56 (2016), 169–180 https://doi.org/10.1071/AN15365.
de Haas, Y., Windig, J.J., Calus, M.P.L., Dijkstra, J., de Haan, M., Bannink, A., Veerkamp, R.F., Genetic parameters for predicted methane production and the potential for reducing enteric emissions through genomic selection. J. Dairy Sci. 94 (2011), 6122–6134 https://doi.org/10.3168/jds.2011-4439 22118100.
Deighton, M.H., Williams, S.R.O., Hannah, M.C., Eckard, R.J., Boland, T.M., Wales, W.J., Moate, P.J., A modified sulphur hexafluoride tracer technique enables accurate determination of enteric methane emissions from ruminants. Anim. Feed Sci. Technol. 197 (2014), 47–63 https://doi.org/10.1016/j.anifeedsci.2014.08.003.
Ellis, J.L., Bannink, A., France, J., Kebreab, E., Dijkstra, J., Evaluation of enteric methane prediction equations for dairy cows used in whole farm models. Glob. Chang. Biol. 16 (2010), 3246–3256 https://doi.org/10.1111/j.1365-2486.2010.02188.x.
Ellis, J.L., Kebreab, E., Odongo, N.E., McBride, B.W., Okine, E.K., France, J., Prediction of methane production from dairy and beef cattle. J. Dairy Sci. 90 (2007), 3456–3466 https://doi.org/10.3168/jds.2006-675 17582129.
Engineering ToolBox, STP – standard temperature and pressure and NTP – normal temperature and pressure. https://www.engineeringtoolbox.com/stp-standard-ntp-normal-air-d_772.html, 2004. (Accessed 11 June 2018)
FAO (Food and Agriculture Organization of the United Nations), Greenhouse Gas Emissions from Agriculture, Forestry and Other Land Use. 2016, FAO http://www.fao.org/3/a-i6340e.pdf.
FAO (Food and Agriculture Organization of the United Nations), Enteric fermentation. 2018, FAOSTAT http://www.fao.org/faostat/en/#data/ge. (Accessed 10 June 2018)
Garnsworthy, P.C., Craigon, J., Hernandez-Medrano, J.H., Saunders, N., Variation among individual dairy cows in methane measurements made on farm during milking. J. Dairy Sci. 95 (2012), 3181–3189 https://doi.org/10.3168/jds.2011-4606 22612953.
Garnsworthy, P.C., Difford, G.F., Bell, M.J., Bayat, A.R., Huhtanen, P., Kuhla, B., Lassen, J., Peiren, N., Pszczola, M., Sorg, D., Visker, M.H.P.W., Yan, T., Comparison of methods to measure methane for use in genetic evaluation of dairy cattle. Animals (Basel), 9, 2019, 837 https://doi.org/10.3390/ani9100837 31640130.
González-Recio, O., Forni, S., Genome-wide prediction of discrete traits using Bayesian regressions and machine learning. Genet. Sel. Evol., 43, 2011, 7 https://doi.org/10.1186/1297-9686-43-7 21329522.
Gower, J.C., A general coefficient of similarity and some of its properties. Biometrics 27 (1971), 857–874 https://doi.org/10.2307/2528823.
Hellwing, A.L.F., Lund, P., Madsen, J., Weisbjerg, M.R., Comparison of enteric methane production predicted from the CH4/CO2 ratio and measured in respiration chambers. Adv. Anim. Biosci., 4, 2013, 557.
Hill, W.G., On selection among groups with heterogenous variance. Anim. Prod. 39 (1984), 473–477.
Hristov, A.N., Kebreab, E., Niu, M., Oh, J., Bannink, A., Bayat, A.R., Boland, T.M., Brito, A.F., Casper, D.P., Crompton, L.A., Dijkstra, J., Eugène, M., Garnsworthy, P.C., Haque, N., Hellwing, A.L.F., Huhtanen, P., Kreuzer, M., Kuhla, B., Lund, P., Madsen, J., Martin, C., Moate, P.J., Muetzel, S., Muñoz, C., Peiren, N., Powell, J.M., Reynolds, C.K., Schwarm, A., Shingfield, K.J., Storlien, T.M., Weisbjerg, M.R., Yáñez-Ruiz, D.R., Yu, Z., Symposium review: Uncertainties in enteric methane inventories, measurement techniques, and prediction models. J. Dairy Sci. 101 (2018), 6655–6674 https://doi.org/10.3168/jds.2017-13536 29680642.
Hristov, A.N., Oh, J., Firkins, J.L., Dijkstra, J., Kebreab, E., Waghorn, G., Makkar, H.P.S., Adesogan, A.T., Yang, W., Lee, C., Gerber, P.J., Henderson, B., Tricarico, J.M., Special topics: Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J. Anim. Sci. 91 (2013), 5045–5069 https://doi.org/10.2527/jas.2013-6583 24045497.
Jantke, K., Hartmann, M.J., Rasche, L., Blanz, B., Schneider, U.A., Agricultural greenhouse gas emissions: Knowledge and positions of German farmers. Land (Basel), 9, 2020, 130 https://doi.org/10.3390/land9050130.
Järvelin, K., Kekäläinen, J., Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. 20 (2002), 422–446 https://doi.org/10.1145/582415.582418.
Jentsch, W., Schweigel, M., Weissbach, F., Scholze, H., Pitroff, W., Derno, M., Methane production in cattle calculated by the nutrient composition of the diet. Arch. Anim. Nutr. 61 (2007), 10–19 https://doi.org/10.1080/17450390601106580 17361944.
Johnson, K.A., Johnson, D.E., Methane emissions from cattle. J. Anim. Sci. 73 (1995), 2483–2492 https://doi.org/10.2527/1995.7382483x 8567486.
Kebreab, E., Clark, K., Wagner-Riddle, C., France, J., Methane and nitrous oxide emissions from Canadian animal agriculture: A review. Can. J. Anim. Sci. 86 (2006), 135–157 https://doi.org/10.4141/A05-010.
Kebreab, E., Johnson, K.A., Archibeque, S.L., Pape, D., Wirth, T., Model for estimating enteric methane emissions from United States dairy and feedlot cattle. J. Anim. Sci. 86 (2008), 2738–2748 https://doi.org/10.2527/jas.2008-0960 18539822.
Knief, U., Forstmeier, W., Violating the normality assumption may be the lesser of two evils. Behav. Res. Methods 53 (2021), 2576–2590 https://doi.org/10.1101/498931.
Kowarik, A., Templ, M., Imputation with the R package VIM. J. Stat. Softw. 74 (2016), 1–16 https://doi.org/10.18637/jss.v074.i07.
Kriss, M., A comparison of feeding standards for dairy cows, with especial reference to energy requirements. J. Nutr. 4 (1931), 141–161 https://doi.org/10.1093/jn/4.1.141.
Liaw, A., Wiener, M., Classification and regression by randomforest. R News 2 (2002), 18–22 http://CRAN.R-project.org/doc/Rnews/.
Mills, J.A.N., Kebreab, E., Yates, C.M., Crompton, L.A., Cammell, S.B., Dhanoa, M.S., Agnew, M.S.R.E., France, J., Alternative approaches to predicting methane emissions from dairy cows. J. Anim. Sci. 81 (2003), 3141–3150 https://doi.org/10.2527/2003.81123141x 14677870.
Moate, P.J., Williams, S.R.O., Grainger, C., Hannah, M.C., Ponnampalam, E.N., Eckard, R.J., Influence of cold-pressed canola, brewers grains and hominy meal as dietary supplements suitable for reducing enteric methane emissions from lactating dairy cows. Anim. Feed Sci. Technol. 166–167 (2011), 254–264 https://doi.org/10.1016/j.anifeedsci.2011.04.069.
Moraes, L.E., Strathe, A.B., Fadel, J.G., Casper, D.P., Kebreab, E., Prediction of enteric methane emissions from cattle. Glob. Chang. Biol. 20 (2014), 2140–2148 https://doi.org/10.1111/gcb.12471 24259373.
Negussie, E., Supplemental Table S1. Harvard Dataverse, V1. https://doi.org/10.7910/DVN/BINDG9, 2022.
Negussie, E., de Haas, Y., Dehareng, F., Dewhurst, R.J., Dijkstra, J., Gengler, N., Morgavi, D.P., Soyeurt, H., van Gastelen, S., Yan, T., Biscarini, F., Invited review: Large-scale indirect measurements for enteric methane emissions in dairy cattle: A review of proxies and their potential for use in management and breeding decisions. J. Dairy Sci. 100 (2017), 2433–2453 https://doi.org/10.3168/jds.2016-12030 28161178.
Negussie, E., González-Recio, O., de Haas, Y., Gengler, N., Soyeurt, H., Peiren, N., Pszczola, M., Garnsworthy, P., Battagin, M., Bayat, A.R., Lassen, J., Yan, T., Boland, T., Kuhla, B., Strabel, T., Schwarm, A., Vanlierde, A., Biscarini, F., Machine learning ensemble algorithms in predictive analytics of dairy cattle methane emission using imputed versus non-imputed datasets. Proceedings of 7th GGAA (Greenhouse Gas and Animal Agriculture) Conference, Iguassu Falls, Brazil, 2019, Embrapa Southeast Livestock, 40.
Nielsen, N.I., Volden, H., Åkerlind, M., Brask, M., Hellwing, A.L.F., Storlien, T., Bertilsson, J., A prediction equation for enteric methane emission from dairy cows for use in NorFor. Acta Agric. Scand. A Anim. Sci. 63 (2013), 126–130 https://doi.org/10.1080/09064702.2013.851275.
Niu, M., Kebreab, E., Hristov, A.N., Oh, J., Arndt, C., Bannink, A., Bayat, A.R., Brito, A.F., Boland, T., Casper, D., Crompton, L.A., Dijkstra, J., Eugène, M.A., Garnsworthy, P.C., Haque, M.N., Hellwing, A.L.F., Huhtanen, P., Kreuzer, M., Kuhla, B., Lund, P., Madsen, J., Martin, C., McClelland, S.C., McGee, M., Moate, P.J., Muetzel, S., Muñoz, C., O'Kiely, P., Peiren, N., Reynolds, C.K., Schwarm, A., Shingfield, K.J., Storlien, T.M., Weisbjerg, M.R., Yáñez-Ruiz, D.R., Yu, Z., Prediction of enteric methane production, yield, and intensity in dairy cattle using an intercontinental database. Glob. Chang. Biol. 24 (2018), 3368–3389 https://doi.org/10.1111/gcb.14094 29450980.
O'Neill, B.F., Deighton, M.H., O'Loughlin, B.M., Mulligan, F.J., Boland, T.M., O'Donovan, M., Lewis, E., Effects of a perennial ryegrass diet or total mixed ration diet offered to spring-calving Holstein-Friesian dairy cows on methane emissions, dry matter intake, and milk production. J. Dairy Sci. 94 (2011), 1941–1951 https://doi.org/10.3168/jds.2010-3361 21426985.
Ramin, M., Huhtanen, P., Development of equations for predicting methane emissions from ruminants. J. Dairy Sci. 96 (2013), 2476–2493 https://doi.org/10.3168/jds.2012-6095.
Roberts, D.R., Bahn, V., Ciuti, S., Boyce, M.S., Elith, J., Guillera-Arroita, G., Hauenstein, S., Lahoz-Monfort, J.J., Schröder, B., Thuiller, W., Warton, D.I., Wintle, B.A., Hartig, F., Dormann, C.F., Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40 (2017), 913–929 https://doi.org/10.1111/ecog.02881.
Schielzeth, H., Dingemanse, N.J., Nakagawa, S., Westneat, D.F., Allegue, H., Teplitsky, C., Réale, D., Dochtermann, N.A., Garamszegi, L.Z., Araya-Ajoy, Y.G., Robustness of linear mixed-effects models to violations of distributional assumptions. Methods Ecol. Evol. 11 (2020), 1141–1152 https://doi.org/10.1111/2041-210X.13434.
Sobrinho, T.L.P., Branco, R.H., Magnani, E., Berndt, A., Canesin, R.C., Mercadante, M.E.Z., Development and evaluation of prediction equations for methane emission from Nellore cattle. Acta Sci. Anim. Sci., 41, 2018, e42559 https://doi.org/10.4025/actascianimsci.v41i1.42559.
St-Pierre, N.R., Invited review: Integrating quantitative findings from multiple studies using mixed model methodology. J. Dairy Sci. 84 (2001), 741–755 https://doi.org/10.3168/jds.S0022-0302(01)74530-4 11352149.
Storlien, T.M., Volden, H., Almøy, T., Beauchemin, K.A., McAllister, T.A., Harstad, O.M., Prediction of enteric methane production from dairy cows. Acta Agric. Scand. A Anim. Sci. 64 (2014), 98–109 https://doi.org/10.1080/09064702.2014.959553.
Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D., Altman, R.B., Missing value estimation methods for DNA microarrays. Bioinformatics 17 (2001), 520–525 https://doi.org/10.1093/bioinformatics/17.6.520 11395428.
Visscher, P.M., Hill, W.G., Heterogeneity of variance and dairy-cattle breeding. Anim. Sci. 55 (1992), 321–329 https://doi.org/10.1017/S0003356100021012.
Waghorn, G.C., Clark, H., Taufa, V., Cavanagh, A., Monensin controlled-release capsules for methane mitigation in pasture-fed dairy cows. Aust. J. Exp. Agric. 48 (2008), 65–68 https://doi.org/10.1071/EA07299.
Wang, Q., Bovenhuis, H., Validation strategy can result in an overoptimistic view of the ability of milk infrared spectra to predict methane emission of dairy cattle. J. Dairy Sci. 102 (2019), 6288–6295 https://doi.org/10.3168/jds.2018-15684 31056328.
Wickham, H., Ggplot2: Elegant Graphics for Data Analysis. 2nd ed., 2009, Springer Nature.
Williams, S.R.O., Clarke, T., Hannah, M.C., Marett, L.C., Moate, P.J., Auldist, M.J., Wales, W.J., Energy partitioning in herbage-fed dairy cows offered supplementary grain during an extended lactation. J. Dairy Sci. 96 (2013), 484–494 https://doi.org/10.3168/jds.2012-5787 23141822.
Wolfert, S., Ge, L., Verdouw, C., Bogaardt, M.-J., Big data in smart farming–A review. Agric. Syst. 153 (2017), 69–80 https://doi.org/10.1016/j.agsy.2017.01.023.
Yan, T., Agnew, R.E., Gordon, F.J., Porter, M.J., The prediction of methane energy output in dairy and beef cattle offered grass silage-based diets. Livest. Prod. Sci. 64 (2000), 253–263 https://doi.org/10.1016/S0301-6226(99)00145-1.
Zhang, C., Ma, Y., Random forest. Cutler, A., Cutler, D.R., Stevens, J.R., (eds.) Ensemble Machine Learning: Methods and Applications, 2012, Springer, 157–175 https://doi.org/10.1007/978-1-4419-9326-7_5.
Zhao, Y., Nan, X., Yang, L., Zheng, S., Jiang, L., Xiong, B., A review of enteric methane emission measurement techniques in ruminants. Animals (Basel), 10, 2020, 1004 https://doi.org/10.3390/ani10061004 32521767.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.