Earth and Planetary Sciences (miscellaneous); General Environmental Science
Abstract :
[en] Extreme events will become more common due to global change, requiring enhanced monitoring and pushing conventional observation networks to their limits. This encourages us to combine all the possible sources of information to obtain a complete picture of extreme events and their evolution. This commentary builds on an example of the July 2021 catastrophic floods that hit northwest Europe, for which the use of seismometer and gravimeter captures complementary data and brings a new understanding of the event and
its dynamics. A sudden increase in seismic noise coincides with the testimony reporting on a “tsunami” downstream of the geophysical station. Concurrently, the gravimeter showed increasing saturation of the weathered zone, showing less and less water accumulation and increasing runoff. When rain re-intensified after a 3-hr break, the subsoil's saturation state induced an accelerated runoff increase, as revealed by the river flow, in a much stronger way than during the rainy episodes just before. We show that the gravimeter detected the
saturation of the catchment subsoil and soil in real-time. When the rain re-intensified, this saturation resulted in a sudden, devastating, and deadly flood. Our study opens up the possibility of integrating real-time gravity in early warning systems for such events.
Disciplines :
Geological, petroleum & mining engineering
Author, co-author :
Van Camp, Michel ; Seismology‐Gravimetry Royal Observatory of Belgium Uccle Belgium
Viron, Olivier ; Littoral Environnement et Sociétés—LIENSs La Rochelle Université CNRS La Rochelle France
Dassargues, Alain ; Université de Liège - ULiège > Urban and Environmental Engineering
Delobbe, Laurent; Royal Meteorological Institute of Belgium Uccle Belgium
Chanard, Kristel; Université de Paris—IPGP Paris France
Gobron, Kevin; Seismology‐Gravimetry Royal Observatory of Belgium Uccle Belgium
Language :
English
Title :
Extreme Hydrometeorological Events, a Challenge for Gravimetric and Seismology Networks
Bakker, M., Gimbert, F., Geay, T., Misset, C., Zanker, S., & Recking, A. (2020). Field application and validation of a seismic bedload transport model. Journal of Geophysical Research: Earth Surface, 125(5). https://doi.org/10.1029/2019JF005416
Burtin, A., Bollinger, L., Vergne, J., Cattin, R., & Nábělek, J. L. (2008). Spectral analysis of seismic noise induced by rivers: A new tool to monitor spatiotemporal changes in stream hydrodynamics. Journal of Geophysical Research, 113(B5), B05301. https://doi.org/10.1029/2007JB005034
Burtin, A., Cattin, R., Bollinger, L., Vergne, J., Steer, P., Robert, A., et al. (2011). Towards the hydrologic and bed load monitoring from high-frequency seismic noise in a braided river: The “torrent de St Pierre”, French Alps. Journal of Hydrology, 408(1–2), 43–53. https://doi.org/10.1016/j.jhydrol.2011.07.014
Carbone, D., Antoni-Micollier, L., Hammond, G., deZeeuw - van Dalfsen, E., Rivalta, E., Bonadonna, C., et al. (2020). The NEWTON-g gravity imager: Toward new paradigms for terrain gravimetry. Frontiers in Earth Science, 452, 573396. https://doi.org/10.3389/feart.2020.573396
Cook, K. L., Rekapalli, R., Dietze, M., Pilz, M., Cesca, S., Rao, N. P., et al. (2021). Detection and potential early warning of catastrophic flow events with regional seismic networks. Science, 374(6563), 87–92. https://doi.org/10.1126/science.abj1227
Das, N. N., Entekhabi, D., Dunbar, R. S., Chaubell, M. J., Colliander, A., Yueh, S., et al. (2019). The SMAP and Copernicus Sentinel 1A/B microwave active-passive high resolution surface soil moisture product. Remote Sensing of Environment, 233, 111380. https://doi.org/10.1016/j.rse.2019.111380
Delobbe, L., Watlet, A., Wilfert, S., & Van Camp, M. (2019). Exploring the use of underground gravity monitoring to evaluate radar estimates of heavy rainfall. Hydrology and Earth System Sciences, 23(1), 93–105. https://doi.org/10.5194/hess-23-93-2019
Gimbert, F., Tsai, V. C., & Lamb, M. P. (2014). A physical model for seismic noise generation by turbulent flow in rivers. Journal of Geophysical Research: Earth Surface, 119(10), 2209–2238. https://doi.org/10.1002/2014JF003201
Goudenhoofdt, E., & Delobbe, L. (2016). Generation and verification of rainfall estimates from 10-yr volumetric weather radar measurements. Journal of Hydrometeorology, 17(4), 1223–1242. https://doi.org/10.1175/JHM-D-15-0166.1
Jiang, S., Babovic, V., Zheng, Y., & Xiong, J. (2019). Advancing opportunistic sensing in hydrology: A novel approach to measuring rainfall with ordinary surveillance cameras. Water Resources Research, 55(4), 3004–3027. https://doi.org/10.1029/2018WR024480
Journée, M. (2022). Comment on nhess-2021-394. peer review. https://doi.org/10.5194/nhess-2021-394-CC2
Meurers, B., Van Camp, M., & Petermans, T. (2007). Correcting superconducting gravity time-series using rainfall modelling at the Vienna and Membach stations and application to Earth tide analysis. Journal of Geodesy, 81(11), 703–712. https://doi.org/10.1007/s00190-007-0137-1
Miller, M. M., & Shirzaei, M. (2019). Land subsidence in Houston correlated with flooding from Hurricane Harvey. Remote Sensing of Environment, 225, 368–378. https://doi.org/10.1016/j.rse.2019.03.022
Milliner, C., Materna, K., Bürgmann, R., Fu, Y., Moore, A. W., Bekaert, D., et al. (2018). Tracking the weight of Hurricane Harvey's stormwater using GPS data. Science Advances, 4(9), eaau2477. https://doi.org/10.1126/sciadv.aau2477
Multiple Operators. (1997). International Geodynamics and Earth Tide Service [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/SG
Peng, J., Albergel, C., Balenzano, A., Brocca, L., Cartus, O., Cosh, M. H., et al. (2021). A roadmap for high-resolution satellite soil moisture applications—Confronting product characteristics with user requirements. Remote Sensing of Environment, 252, 112162. https://doi.org/10.1016/j.rse.2020.112162
Peng, J., Loew, A., Merlin, O., & Verhoest, N. E. C. (2017). A review of spatial downscaling of satellite remotely sensed soil moisture. Reviews of Geophysics, 55(2), 341–366. https://doi.org/10.1002/2016RG000543
Royal Observatory of Belgium. (1985). Belgian Seismic Network [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/BE
Royen, M.-C. (2021). Dégâts, décès: Les chiffres des inondations en vallée de la Vesdre. Le Vif. Retrieved from https://www.levif.be/actualite/belgique/degats-deces-les-chiffres-des-inondations-en-vallee-de-la-vesdre/article-normal-1495823.html
Van Camp, M., Francis, O., & Lecocq, T. (2017). Recording Belgium's Gravitational History. Eos, 98. https://doi.org/10.1029/2017EO089743
Van Camp, M., Vanclooster, M., Crommen, O., Petermans, T., Verbeeck, K., Meurers, B., et al. (2006). Hydrogeological investigations at the Membach station, Belgium, and application to correct long periodic gravity variations. Journal of Geophysical Research, 111(B10). https://doi.org/10.1029/2006JB004405
Van Weverberg, K., vanLipzig, N. P. M., & Delobbe, L. (2011). The impact of size distribution assumptions in a bulk one-moment microphysics scheme on simulated surface precipitation and storm dynamics during a low-topped supercell case in Belgium. Monthly Weather Review, 139(4), 1131–1147. https://doi.org/10.1175/2010MWR3481.1
Vincent, S. (2021). Les inondations vont coûter plus de 60 millions à la beurrerie Corman: “Une situation statistiquement improbable une vraie catastrophe”. [Newpaper] Retrieved from https://www.lalibre.be/economie/entreprises-startup/2021/07/28/les-inondations-vont-couter-plus-de-60-millions-a-la-beurrerie-corman-une-situation-statistiquement-improbable-une-vraie-catastrophe-V5ICEZXT7RBUHJ2SVXJNE6KFWM/
World Weather Attribution. (2021). Heavy rainfall which led to severe flooding in Western Europe made more likely by climate change. Retrieved from https://www.worldweatherattribution.org/heavy-rainfall-which-led-to-severe-flooding-in-western-europe-made-more-likely-by-climate-change/
Zeimetz, F., Launay, M., Bourqui, P., Calixte, E., Fallon, C., & Teller, J. (2021). Analyse indépendante sur la gestion des voies hydrauliques lors des intempéries de la semaine du 12 juillet 2021 (Synthetic report No. Lot 1: Factualisation) (p. 128). Renens, Stucky S.A. Retrieved from https://henry.wallonie.be/home/communiques--actualites/communiques-de-presse/presses/rapport-de-lanalyse-independante-sur-la-gestion-des-voies-hydrauliques-1er-volet.html