[en] Limb observations of the spectrum of nightglow emission in the delta (190-240 nm) and gamma (225-270 nm) bands of nitric oxide have been made with the Spectroscopy for Investigation of Characteristics of the Atmosphere of Venus (SPICAV) ultraviolet spectrometer on board Venus Express. These emissions arise from radiative recombination between O([SUP]3[/SUP]P) and N([SUP]4[/SUP]S) atoms that are produced on the dayside and recombine to form excited NO molecules on the nightside. No other emission feature has been identified. The mean altitude of the emission layer is located at 113 km, but it varies between 95 and 132 km. The mean brightness of the total NO emission at the limb is 32 kR, but it is highly variable with limb intensities as large as 440 kR observed at low latitude and values below 5 kR seen at northern midlatitudes. No systematic dependence of the brightness with latitude is observed, but the mean altitude of the emission maximum statistically drops with increasing latitude between 6° and 72°N. Typical observed limb profiles are compared with simulations based on a one-dimensional chemical-diffusive atmospheric model. From model fits to observed profiles, we find that the downward flux of N atoms at 130 km typically varies between 1 × 10[SUP]8[/SUP] to 4 × 10[SUP]9[/SUP] atoms cm[SUP]-2[/SUP] s[SUP]-1[/SUP]. Comparisons of observed airglow topside scale heights with modeled profiles smoothed by the instrumental field of view indicate that the observations are compatible with a downward flow of O and N atoms by molecular and turbulent transport above the peak of emission. The K coefficient deduced from comparisons to limb profiles is less than that determined from the observations made with the Pioneer Venus UV spectrometer at low latitude during periods of high solar activity.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Cox, Cédric ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Saglam, Adem ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Bertaux, Jean-Loup
Villard, E.
Nehmé, C.
Language :
English
Title :
Limb observations of the ultraviolet nitric oxide nightglow with SPICAV on board Venus Express
Publication date :
01 August 2008
Journal title :
Journal of Geophysical Research. Planets
ISSN :
2169-9097
eISSN :
2169-9100
Publisher :
American Geophysical Union, Washington, United States - District of Columbia
Bertaux, J.-L., et al. (2005), Nightglow in the upper atmosphere of Mars and implications for atmospheric transport, Science, 307, 566-569, doi:10.1126/science. 1106957.
Bertaux, J.-L., et al. (2007a), SPICAVon Venus Express: Three spectrometers to study the global structure and composition of the Venus atmosphere, Planet. Space Sci., 55, 1673-1700, doi:10.1016/j.pss.2007.01. 016.
Bertaux, J.-L., et al. (2007b), A warm layer in Venus' cryosphere and high altitude measurements of HF, HCl, H2O and HDO, Nature, 450, 646-649, doi:10.1038/nature05974.
Bougher, S. W., J. C. Gérard, A. I. F. Stewart, and C. G. Fesen (1990), The Venus nitric oxide night airglow: Model calculations based on the Venus Thermospheric General Circulation Model, J. Geophys. Res., 95, 6271-6284, doi:10.1029/JA095iA05p06271.
Bougher, S. W., S. Rafkin, and P. Drossart (2006), Dynamics of the Venus upper atmosphere: Outstanding problems and new constraints expected from Venus Express, Planet. Space Sci., 54, 1371-1380, doi:10.1016/j.pss.2006.04. 023.
Campbell, I. M., and C. N. Gray (1973), Rate constants for the O ( 3P) recombination and association with N (4S), Chem. Phys. Lett., 18, 607-609, doi:10.1016/0009-2614(73)80479-8.
Campbell, I. M., and B. A. Thrush (1966), Behaviour of carbon dioxide and nitrous oxide in active nitrogen, Trans. Faraday Soc, 62, 3366-3374, doi:10.1039/tf9666203366.
Cox, C., A. Saglam, J.-C. Gérard, J.-L. Bertaux, F. González-Galindo, F. Leblanc, and A. Reberac (2008), Distribution of the ultraviolet nitric oxide Martian night airglow: Observations from Mars Express and comparisons with a one-dimensional model, J. Geophys. Res., doi:10.1029/2007JE003037, in press.
Dalgarno, A., J. F. Babb, and Y. Sun (1992), Radiative association in planetary atmospheres, Planet. Space Sci., 40, 243-246, doi:10.1016/0032-0633(92)90062-S.
Drossart, P., et al. (2007), Infrared spectral imaging observations of Venus by VIRTIS reveal a dynamical upper atmosphere, Nature, 450, 641-645, doi:10.1038/nature06140.
Feldman, P. D., H. W. Moos, J. T. Clarke, and A. L. Lane (1979), Identification of the UV nightglow from Venus, Nature, 279, 221-222, doi:10.1038/279221a0.
Fox, J. L. (1994), Rate coefficient for the reaction N + NO, J. Geophys. Res., 99, 6273-6276, doi:10.1029/93JA03299.
Gérard, J.-C, A. I. F. Stewart, and S. W. Bougher (1981), The altitude distribution of the Venus ultraviolet airglow and implications on vertical transport, Geophys. Res. Lett., 8, 633-636, doi:10.1029/ GL008i006p00633.
Gérard, J.-C, E. J. Deneye, and M. Lerho (1988), Sources and distribution of odd nitrogen in the Venus daytime thermosphere, Icarus, 75, 171-184, doi:10.1016/0019-1035(88)90135-2.
Gérard, J.-C, A. Saglam, G. Piccioni, P. Drossart, C. Cox, S. Erard, R. Hueso, and A. Sánchez-Lavega (2008), The distribution of the O2 infrared nightglow observed with VIRTIS on board Venus Express, Geophys. Res. Lett., 35, L02207, doi:10.1029/2007GL032021.
Groth, W., D. Kley, and U. Schurath (1971), Rate constant for the infrared emission of the NO (C2II→A2Σ +) transition, J. Quant. Spectrosc. Radial. Transfer, 11, 1475-1480, doi:10.1016/0022-4073(71)90109-9.
Hedin, A. E., H. B. Niemann, W. T. Kasprzak, and A. Seiff (1983), Global empirical model of the Venus thermosphere, J. Geophys. Res., 88, 73-83.
Hueso, R., A. Sánchez-Lavega, G. Piccioni, P. Drossart, J. C. Gérard, I. Khatuntsev, L. Zasova, and A. Migliorini (2008), Morphology and dynamics of Venus oxygen airglow, J. Geophys. Res., 113, E00B02, doi:10.1029/2008JE003081.
Leu, M.-X, and Y. L. Yung (1987), Determination of O2 (a 1Δg) and O2 (b, 1Σ+g) yields in the reaction O + ClO → Cl + O2: Implications for photochemistry in the atmosphere of Venus, Geophys. Res. Lett., 14(9), 949-952, doi:10.1029/GLO14i009p00949.
Nair, H., M. Allen, A. D. Anbar, Y. L. Yung, and R. T. Clancy (1994), A photochemical model of the Martian atmosphere, Icarus, 111, 124-150, doi:10.1006/icar.l994.1137.
Stewart, A. I., and C. A. Barth (1979), Ultraviolet night airglow of Venus, Science, 205, 59-62, doi:10.1126/science.205.4401.59.
Stewart, A. I. F., J.-C. Gerard, D. W. Rusch, and S. W. Bougher (1980), Morphology of the Venus ultraviolet night airglow, J. Geophys. Res., 85, 7861-7870, doi:10.1029/JA085iA13p07861.
Svedhem, H., et al. (2007), Venus Express-The first European mission to Venus, Plannt. Space Sci., 55, 1636-1652, doi:10.1016/j.pss.2007.01.013.
Titov, D. V., et al. (2006), Venus Express science planning, Planet. Space Sci., 54, 1279-1297, doi:10.1016/j.pss.2006.04.017.
von Zahn, U., K. H. Fricke, H. J. Hoffmann, and K. Pelka (1979), Venus: Eddy coefficients in the thermosphere and in the inferred helium content of the lower atmosphere, Geophys. Res. Lett, 6, 337-340, doi:10.1029/ GL006i005p00337.
Yung, Y. L., and W. B. DeMore (1982), Photochemistry of the stratosphere of Venus: Implications for atmospheric evolution, Icarus, 51, 199-247, doi:10.1016/0019-1035(82)90080-X.