Abstract :
[en] Limb observations of the spectrum of nightglow emission in the delta (190-240 nm) and gamma (225-270 nm) bands of nitric oxide have been made with the Spectroscopy for Investigation of Characteristics of the Atmosphere of Venus (SPICAV) ultraviolet spectrometer on board Venus Express. These emissions arise from radiative recombination between O([SUP]3[/SUP]P) and N([SUP]4[/SUP]S) atoms that are produced on the dayside and recombine to form excited NO molecules on the nightside. No other emission feature has been identified. The mean altitude of the emission layer is located at 113 km, but it varies between 95 and 132 km. The mean brightness of the total NO emission at the limb is 32 kR, but it is highly variable with limb intensities as large as 440 kR observed at low latitude and values below 5 kR seen at northern midlatitudes. No systematic dependence of the brightness with latitude is observed, but the mean altitude of the emission maximum statistically drops with increasing latitude between 6° and 72°N. Typical observed limb profiles are compared with simulations based on a one-dimensional chemical-diffusive atmospheric model. From model fits to observed profiles, we find that the downward flux of N atoms at 130 km typically varies between 1 × 10[SUP]8[/SUP] to 4 × 10[SUP]9[/SUP] atoms cm[SUP]-2[/SUP] s[SUP]-1[/SUP]. Comparisons of observed airglow topside scale heights with modeled profiles smoothed by the instrumental field of view indicate that the observations are compatible with a downward flow of O and N atoms by molecular and turbulent transport above the peak of emission. The K coefficient deduced from comparisons to limb profiles is less than that determined from the observations made with the Pioneer Venus UV spectrometer at low latitude during periods of high solar activity.
Scopus citations®
without self-citations
16