Poster (Scientific congresses and symposiums)
Semi-Supervised Training to Improve Detection for Satellite Images
Vandeghen, Renaud; Cioppa, Anthony; Van Droogenbroeck, Marc
2022AI4Copernicus: Earth Observation and Artificial Intelligence for a Safer World
 

Files


Full Text
Poster_Vandeghen_cioppa.pdf
Author postprint (938.73 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Artificial Intelligence; Computer vision; detection; semi-supervised; satellite
Abstract :
[en] We propose a novel semi-supervised learning method for leveraging unlabeled data by generating pseudo labels with a teacher-student approach. We also introduce three loss parametrizations to introduce doubt in the pseudo labels based on their confidence scores. Finally, we show that our method allows to improve detection performance for satellite images.
Disciplines :
Computer science
Author, co-author :
Vandeghen, Renaud  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Télécommunications
Cioppa, Anthony   ;  Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
Van Droogenbroeck, Marc  ;  Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
 These authors have contributed equally to this work.
Language :
English
Title :
Semi-Supervised Training to Improve Detection for Satellite Images
Publication date :
03 May 2022
Number of pages :
1
Event name :
AI4Copernicus: Earth Observation and Artificial Intelligence for a Safer World
Event organizer :
The Copernicus Relays of Belgium (Skywin, ISSeP, Spacebel and VITO) and the Belgian Royal Military Academy
Event place :
Bruxelles, Belgium
Event date :
3 mai 2022
By request :
Yes
Audience :
International
Available on ORBi :
since 27 April 2022

Statistics


Number of views
87 (23 by ULiège)
Number of downloads
30 (6 by ULiège)

Bibliography


Similar publications



Contact ORBi