Majerus, Steve ; Université de Liège - ULiège > Département de Psychologie ; Université de Liège - ULiège > Psychologie et Neuroscience Cognitives (PsyNCog)
Language :
English
Title :
Neural patterns in parietal cortex and hippocampus distinguish serial order positions in working memory
Publication date :
2022
Journal title :
Journal of Cognitive Neuroscience
ISSN :
0898-929X
eISSN :
1530-8898
Publisher :
Cambridge Center for Behavioral Studies, United States
Abrahamse, E. L., van Dijck, J. P., & Fias, W. (2017). Grounding verbal working memory: The case of serial order. Current Directions in Psychological Science, 26, 429–433. https://doi.org/10.1177/0963721417704404
Abrahamse, E., van Dijck, J. P., Majerus, S., & Fias, W. (2014). Finding the answer in space: The mental whiteboard hypothesis on serial order in working memory. Frontiers in Human Neuroscience, 8, 932. https://doi.org/10.3389/fnhum.2014.00932, PubMed: 25505394
Amunts, K., Kedo, O., Kindler, M., Pieperhoff, P., Mohlberg, H., Shah, N. J., et al. (2005). Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: Intersubject variability and probability maps. Anatomy and Embryology, 210, 343–352. https://doi.org/10.1007/s00429-005-0025-5, PubMed: 16208455
Ansari, D. (2008). Effects of development and enculturation on number representation in the brain. Nature Reviews Neuroscience, 9, 278–291. https://doi.org/10.1038/nrn2334, PubMed: 18334999
Attout, L., Fias, W., Salmon, E., & Majerus, S. (2014). Common neural substrates for ordinal representation in short-term memory, numerical and alphabetical cognition. PLoS One, 9, e92049. https://doi.org/10.1371/journal.pone.0092049, PubMed: 24632823
Attout, L., Leroy, N., & Majerus, S. (2022). The neural representation of ordinal information: Domain-specific or domain-general? Cerebral Cortex, 32, 1170–1183. https://doi.org/10.1093/cercor/bhab279, PubMed: 34379736
Axmacher, N., Henseler, M. M., Jensen, O., Weinreich, I., Elger, C. E., & Fell, J. (2010). Cross-frequency coupling supports multi-item working memory in the human HC. Proceedings of the National Academy of Sciences, U.S.A., 107, 3228–3233. https://doi.org/10.1073/pnas.0911531107, PubMed: 20133762
Axmacher, N., Mormann, F., Fernández, G., Cohen, M. X., Elger, C. E., & Fell, J. (2007). Sustained neural activity patterns during working memory in the human medial temporal lobe. Journal of Neuroscience, 27, 7807–7816. https://doi.org/10.1523/JNEUROSCI.0962-07.2007, PubMed: 17634374
Baddeley, A. D. (1966a). Short-term memory for word sequences as a function of acoustic, semantic and formal similarity. Quarterly Journal of Experimental Psychology, 18, 362–365. https://doi.org/10.1080/14640746608400055, PubMed: 5956080
Baddeley, A. D. (1966b). The influence of acoustic and semantic similarity on long-term memory for word sequences. Quarterly Journal of Experimental Psychology, 18, 302–309. https://doi.org/10.1080/14640746608400047, PubMed: 5956072
Baddeley, A. D. (2003). Working memory: Looking back and looking forward. Nature Reviews Neuroscience, 4, 829–839. https://doi.org/10.1038/nrn1201, PubMed: 14523382
Baddeley, A. D. (2012). Working memory: Theories, models, and controversies. Annual Review of Clinical Psychology, 63, 1–29. https://doi.org/10.1146/annurev-psych-120710-100422, PubMed: 21961947
Bellmund, J. L., Gärdenfors, P., Moser, E. I., & Doeller, C. F. (2018). Navigating cognition: Spatial codes for human thinking. Science, 362, eaat6766. https://doi.org/10.1126/science.aat6766, PubMed: 30409861
Bottini, R., & Doeller, C. F. (2020). Knowledge across reference frames: Cognitive maps and image spaces. Trends in Cognitive Sciences, 24, 606–619. https://doi.org/10.1016/j.tics.2020.05.008, PubMed: 32586649
Brown, G. D., Preece, T., & Hulme, C. (2000). Oscillator-based memory for serial order. Psychological Review, 107, 127–181. https://doi.org/10.1037/0033-295X.107.1.127, PubMed: 10687405
Buzsáki, G., & Moser, E. I. (2013). Memory, navigation and theta rhythm in the hippocampalentorhinal system. Nature Neuroscience, 16, 130–138. https://doi.org/10.1038/nn.3304, PubMed: 23354386
Buzsáki, G., & Tingley, D. (2018). Space and time: The hippocampus as a sequence generator. Trends in Cognitive Sciences, 22, 853–869. https://doi.org/10.1016/j.tics.2018.07.006, PubMed: 30266146
Cabeza, R., Ciaramelli, E., Olson, I. R., & Moscovitch, M. (2008). The parietal cortex and episodic memory: An attentional account. Nature Reviews Neuroscience, 9, 613–625. https://doi.org/10.1038/nrn2459, PubMed: 18641668
Caspers, S., Eickhoff, S. B., Geyer, S., Scheperjans, F., Mohlberg, H., Zilles, K., et al. (2008). The human inferior parietal lobule in stereotaxic space. Brain Structure and Function, 212, 481–495. https://doi.org/10.1007/s00429-008-0195-z, PubMed: 18651173
Caspers, S., Geyer, S., Schleicher, A., Mohlberg, H., Amunts, K., & Zilles, K. (2006). The human inferior parietal cortex: Cytoarchitectonic parcellation and interindividual variability. Neuroimage, 33, 430–448. https://doi.org/10.1016/j.neuroimage.2006.06.054, PubMed: 16949304
Choi, H. J., Zilles, K., Mohlberg, H., Schleicher, A., Fink, G. R., Armstrong, E., et al. (2006). Cytoarchitectonic identification and probabilistic mapping of two distinct areas within the anterior ventral bank of the human intraparietal sulcus. Journal of Comparative Neurology, 495, 53–69. https://doi.org/10.1002/cne.20849, PubMed: 16432904
Ciaramelli, E., Grady, C. L., & Moscovitch, M. (2008). Top–down and bottom–up attention to memory: A hypothesis (AtoM) on the role of the posterior parietal cortex in memory retrieval. Neuropsychologia, 46, 1828–1851. https://doi.org/10.1016/j.neuropsychologia.2008.03.022, PubMed: 18471837
Collin, S. H., Milivojevic, B., & Doeller, C. F. (2015). Memory hierarchies map onto the hippocampal long axis in humans. Nature Neuroscience, 18, 1562–1564. https://doi.org/10.1038/nn.4138, PubMed: 26479587
Combrisson, E., & Jerbi, K. (2015). Exceeding chance level by chance: The caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy. Journal of Neuroscience Methods, 250, 126–136. https://doi.org/10.1016/j.jneumeth.2015.01.010, PubMed: 25596422
Constantinescu, A. O., O’Reilly, J. X., & Behrens, T. E. (2016). Organizing conceptual knowledge in humans with a gridlike code. Science, 352, 1464–1468. https://doi.org/10.1126/science.aaf0941, PubMed: 27313047
Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 201–215. https://doi.org/10.1038/nrn755, PubMed: 11994752
Cowan, N. (1988). Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information-processing system. Psychological Bulletin, 104, 163–191. https://doi.org/10.1037/0033-2909.104.2.163, PubMed: 3054993
Davachi, L., & DuBrow, S. (2015). How the hippocampus preserves order: The role of prediction and context. Trends in Cognitive Sciences, 19, 92–99. https://doi.org/10.1016/j.tics.2014.12.004, PubMed: 25600586
De Belder, M., Abrahamse, E., Kerckhof, M., Fias, W., & van Dijck, J.-P. (2015). Serial position markers in space: Visuospatial priming of serial order working memory retrieval. PLoS One, 10, e0116469. https://doi.org/10.1371/journal.pone.0116469, PubMed: 25611595
De Belder, M., Santens, P., Sieben, A., & Fias, W. (2017). Impaired processing of serial order determines working memory impairments in Alzheimer’s disease. Journal of Alzheimer’s Disease, 59, 1171–1186. https://doi.org/10.3233/JAD-170193, PubMed: 28731436
Eichenbaum, H. (2014). Time cells in the hippocampus: A new dimension for mapping memories. Nature Reviews Neuroscience, 15, 732–744. https://doi.org/10.1038/nrn3827, PubMed: 25269553
Eichenbaum, H. (2017). On the integration of space, time, and memory. Neuron, 95, 1007–1018. https://doi.org/10.1016/j.neuron.2017.06.036, PubMed: 28858612
Eickhoff, S. B., Stephan, K. E., Mohlberg, H., Grefkes, C., Fink, G. R., Amunts, K., et al. (2005). A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage, 25, 1325–1335. https://doi.org/10.1016/j.neuroimage.2004.12.034, PubMed: 15850749
Ekstrom, A. D., Copara, M. S., Isham, E. A., Wang, W. C., & Yonelinas, A. P. (2011). Dissociable networks involved in spatial and temporal order source retrieval. Neuroimage, 56, 1803–1813. https://doi.org/10.1016/j.neuroimage.2011.02.033, PubMed: 21334445
Fias, W., Lammertyn, J., Caessens, B., & Orban, G. A. (2007). Processing of abstract ordinal knowledge in the horizontal segment of the intraparietal sulcus. Journal of Neuroscience, 27, 8952–8956. https://doi.org/10.1523/JNEUROSCI.2076-07.2007, PubMed: 17699676
Gardumi, A., Ivanov, D., Hausfeld, L., Valente, G., Formisano, E., & Uludag, K. (2016). The effect of spatial resolution on decoding accuracy in fMRI multivariate pattern analysis. Neuroimage, 132, 32–42. https://doi.org/10.1016/j.neuroimage.2016.02.033, PubMed: 26899782
Garvert, M. M., Dolan, R. J., & Behrens, T. E. (2017). A map of abstract relational knowledge in the human hippocampal– entorhinal cortex. eLife, 6, e17086. https://doi.org/10.7554/eLife.17086, PubMed: 28448253
Gauthier, B., Pestke, K., & van Wassenhove, V. (2019). Building the arrow of time…over time: A sequence of brain activity mapping imagined events in time and space. Cerebral Cortex, 29, 4398–4414. https://doi.org/10.1093/cercor/bhy320, PubMed: 30566689
Gauthier, B., Prabhu, P., Kotegar, K. A., & van Wassenhove, V. (2020). Hippocampal contribution to ordinal psychological time in the human brain. Journal of Cognitive Neuroscience, 32, 2071–2086. https://doi.org/10.1162/jocn_a_01586, PubMed: 32459130
Guida, A., & Campitelli, G. (2019). Explaining the SPoARC and SNARC effects with knowledge structures: An expertise account. Psychonomic Bulletin & Review, 26, 434–451. https://doi.org/10.3758/s13423-019-01582-0, PubMed: 30887445
Guida, A., Megreya, A. M., Lavielle-Guida, M., Noël, Y., Mathy, F., van Dijck, J. P., et al. (2018). Spatialization in working memory is related to literacy and reading direction: Culture “literarily” directs our thoughts. Cognition, 175, 96–100. https://doi.org/10.1016/j.cognition.2018.02.013, PubMed: 29486378
Guidali, G., Pisoni, A., Bolognini, N., & Papagno, C. (2019). Keeping order in the brain: The supramarginal gyrus and serial order in short-term memory. Cortex, 119, 89–99. https://doi.org/10.1016/j.cortex.2019.04.009, PubMed: 31091486
Hachmann, W. M., Bogaerts, L., Szmalec, A., Woumans, E., Duyck, W., & Job, R. (2014). Short-term memory for order but not for item information is impaired in developmental dyslexia. Annals of Dyslexia, 64, 121–136. https://doi.org/10.1007/s11881-013-0089-5, PubMed: 24488229
Hafting, T., Fyhn, M., Molden, S., Moser, M. B., & Moser, E. I. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature, 436, 801–806. https://doi.org/10.1038/nature03721, PubMed: 15965463
Haxby, J. V. (2012). Multivariate pattern analysis of fMRI: The early beginnings. Neuroimage, 62, 852–855. https://doi.org/10.1016/j.neuroimage.2012.03.016, PubMed: 22425670
Haynes, J.-D., & Rees, G. (2006). Decoding mental states from brain activity in humans. Nature Reviews Neuroscience, 7, 523–534. https://doi.org/10.1038/nrn1931, PubMed: 16791142
Henson, R. N. A., Burgess, N., & Frith, C. D. (2000). Recoding, storage, rehearsal and grouping in verbal short-term memory: An fMRI study. Neuropsychologia, 38, 426–440. https://doi.org/10.1016/s0028-3932(99)00098-6, PubMed: 10683393
JASP Team. (2017). JASP (Version 0.8.5) [Computer software].
Jeffreys, H. (1961). Theory of probability. United Kingdom: Clarendon.
Kahana, M. J. (1996). Associative retrieval processes in free recall. Memory & Cognition, 24, 103–109. https://doi.org/10.3758/BF03197276, PubMed: 8822162
Kowialiewski, B., & Majerus, S. (2020). The varying nature of semantic effects in working memory. Cognition, 202, 1–25. https://doi.org/10.1016/j.cognition.2020.104278, PubMed: 32454286
Kriegeskorte, N., Goebel, R., & Bandettini, P. (2006). Information-based functional brain mapping. Proceedings of the National Academy of Sciences, U.S.A., 103, 3863–3868. https://doi.org/10.1073/pnas.0600244103, PubMed: 16537458
Kumaran, D., & Maguire, E. A. (2006). An unexpected sequence of events: Mismatch detection in the human hippocampus. PLoS Biology, 4, e424. https://doi.org/10.1371/journal.pbio.3000442, PubMed: 17132050
Lee, M. D., Wagenmakers, E.-J. (2014). Bayesian cognitive modeling: A practical course. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781139087759
Long, N. M., & Kahana, M. J. (2019). Hippocampal contributions to serial-order memory. Hippocampus, 29, 252–259. https://doi.org/10.1002/hipo.23025, PubMed: 30178573
Majerus, S. (2019). Verbal working memory and the phonological buffer: The question of serial order. Cortex, 112, 122–133. https://doi.org/10.1016/j.cortex.2018.04.016, PubMed: 29887208
Majerus, S., Attout, L., Artielle, M.-A., & Van der Kaa, M.-A. (2015). The heterogeneity of verbal short-term memory impairment in aphasia. Neuropsychologia, 77, 165–176. https://doi.org/10.1016/j.neuropsychologia.2015.08.010, PubMed: 26275964
Majerus, S., D’Argembeau, A., Martinez Perez, T., Belayachi, S., Van der Linden, M., Collette, F., et al. (2010). The commonality of neural networks for verbal and visual short-term memory. Journal of Cognitive Neuroscience, 22, 2570–2593. https://doi.org/10.1162/jocn.2009.21378, PubMed: 19925207
Majerus, S., Poncelet, M., Van der Linden, M., Albouy, G., Salmon, E., Sterpenich, V., et al. (2006). The left intraparietal sulcus and verbal short-term memory: Focus of attention or serial order? Neuroimage, 32, 880–891. https://doi.org/10.1016/j.neuroimage.2006.03.048, PubMed: 16702002
Maldjian, J. A., Laurienti, P. J., Kraft, R. A., & Burdette, J. H. (2003). An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage, 19, 1233–1239. https://doi.org/10.1016/s1053-8119(03)00169-1, PubMed: 12880848
Marshuetz, C., Reuter-Lorenz, P. A., Smith, E. E., Jonides, J., & Noll, D. C. (2006). Working memory for order and the parietal cortex: An event-related functional magnetic resonance imaging study. Neuroscience, 139, 311–316. https://doi.org/10.1016/j.neuroscience.2005.04.071, PubMed: 16417974
Marshuetz, C., Smith, E. E., Jonides, J., DeGutis, J., & Chenevert, T. L. (2000). Order information in working memory: fMRI evidence for parietal and prefrontal mechanisms. Journal of Cognitive Neuroscience, 12 Suppl. 2, 130–144. https://doi.org/10.1162/08989290051137459, PubMed: 11506653
Martinez Perez, T., Poncelet, M., Salmon, E., & Majerus, S. (2015). Functional alterations in order short-term memory networks in adults with dyslexia. Developmental Neuropsychology, 40, 407–429. https://doi.org/10.1080/87565641.2016.1153098, PubMed: 27043828
Milivojevic, B., & Doeller, C. F. (2013). Mnemonic networks in the hippocampal formation: From spatial maps to temporal and conceptual codes. Journal of Experimental Psychology: General, 142, 1231–1241. https://doi.org/10.1037/a0033746, PubMed: 23875564
Nieder, A., & Dehaene, S. (2009). Representation of number in the brain. Annual Review of Neuroscience, 32, 185–208. https://doi.org/10.1146/annurev.neuro.051508.135550, PubMed: 19400715
Nobre, A. C., Coull, J. T., Maquet, P., Frith, C. D., Vandenberghe, R., & Mesulam, M. M. (2004). Orienting attention to locations in perceptual versus mental representations. Journal of Cognitive Neuroscience, 16, 363–373. https://doi.org/10.1162/089892904322926700, PubMed: 15072672
Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 411–421. https://doi.org/10.1037/0278-7393.28.3.411, PubMed: 12018494
Oberauer, K. (2009). Design for a working memory. Psychology of Learning and Motivation, 51, 45–100. https://doi.org/10.1016/S0079-7421(09)51002-X
O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map: Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34, 171–175. https://doi.org/10.1016/0006-8993(71)90358-1, PubMed: 5124915
O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Clarendon Press.
Papagno, C., Comi, A., Riva, M., Bizzi, A., Vernice, M., Casarotti, A., et al. (2017). Mapping the brain network of the phonological loop. Human Brain Mapping, 38, 3011–3024. https://doi.org/10.1002/hbm.23569, PubMed: 28321956
Polyn, S. M., & Kahana, M. J. (2008). Memory search and the neural representation of context. Trends in Cognitive Sciences, 12, 24–30. https://doi.org/10.1016/j.tics.2007.10.010, PubMed: 18069046
Protopapa, F., Hayashi, M. J., Kulashekhar, S., van der Zwaag, W., Battistella, G., Murray, M. M., et al. (2019). Chronotopic maps in human supplementary motor area. PLoS Biology, 17, e3000026. https://doi.org/10.1371/journal.pbio.3000026, PubMed: 30897088
Ranganath, C., & D’Esposito, M. (2001). Medial temporal lobe activity associated with active maintenance of novel information. Neuron, 31, 865–873. https://doi.org/10.1016/s0896-6273(01)00411-1, PubMed: 11567623
Ranganath, C., & Hsieh, L. T. (2016). The hippocampus: A special place for time. Annals of the New York Academy of Sciences, 1369, 93–110. https://doi.org/10.1111/nyas.13043, PubMed: 27082833
Rasoulzadeh, V., Sahan, M. I., van Dijck, J. P., Abrahamse, E., Marzecova, A., Verguts, T., et al. (2021). Spatial attention in serial order working memory: An EEG study. Cerebral Cortex, 31, 2482–2493. https://doi.org/10.1093/cercor/bhaa368, PubMed: 33305807
Roberts, B. M., Libby, L. A., Inhoff, M. C., & Ranganath, C. (2018). Brain activity related to working memory for temporal order and object information. Behavioural Brain Research, 354, 55–63. https://doi.org/10.1016/j.bbr.2017.05.068, PubMed: 28602963
Ross, R. S., Brown, T. I., & Stern, C. E. (2009). The retrieval of learned sequences engages the HC: Evidence from fMRI. Hippocampus, 19, 790–799. https://doi.org/10.1002/hipo .20558, PubMed: 19219919
Schiller, D., Eichenbaum, H., Buffalo, E. A., Davachi, L., Foster, D. J., Leutgeb, S., et al. (2015). Memory and space: Towards an understanding of the cognitive map. Journal of Neuroscience, 35, 13904–13911. https://doi.org/10.1523/JNEUROSCI.2618-15.2015, PubMed: 26468191
Schrouff, J., Rosa, M. J., Rondina, J. M., Marquand, A. F., Chu, C., Ashburner, J., et al. (2013). PRoNTo: Pattern recognition for neuroimaging toolbox. Neuroinformatics, 11, 319–337. https://doi.org/10.1007/s12021-013-9178-1, PubMed: 23417655
Sestieri, C., Shulman, G. L., & Corbetta, M. (2017). The contribution of the human posterior parietal cortex to episodic memory. Nature Reviews Neuroscience, 18, 183–192. https://doi.org/10.1038/nrn.2017.6, PubMed: 28209980
Shimamura, A. P., Janowsky, J. S., & Squire, L. R. (1990). Memory for the temporal order of events in patients with frontal lobe lesions and amnesic patients. Neuropsychologia, 28, 803–813. https://doi.org/10.1016/0028-3932(90)90004-8, PubMed: 2247207
Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55, 189–208. https://doi.org/10.1037/h0061626, PubMed: 18870876
Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 15, 273–289. https://doi.org/10.1006/nimg.2001 .0978, PubMed: 11771995
van Dijck, J.-P., Abrahamse, E. L., Acar, F., Ketels, B., & Fias, W. (2014). A working memory account of the interaction between numbers and spatial attention. Quarterly Journal of Experimental Psychology, 67, 1500–1513. https://doi.org/10.1080/17470218.2014.903984, PubMed: 24749504
van Dijck, J.-P., Abrahamse, E. L., Majerus, S., & Fias, W. (2013). Spatial attention interacts with serial-order retrieval from verbal working memory. Psychological Science, 24, 1854–1859. https://doi.org/10.1177/0956797613479610, PubMed: 23863755
van Dijck, J.-P., & Fias, W. (2011). A working memory account for spatial–numerical associations. Cognition, 119, 114–119. https://doi.org/10.1016/j.cognition.2010.12.013, PubMed: 21262509
Van Opstal, F., Gevers, W., De Moor, W., & Verguts, T. (2008). Dissecting the symbolic distance effect: Comparison and priming effects in numerical and non-numerical orders. Psychonomic Bulletin & Review, 15, 419–425. https://doi.org/10.3758/pbr.15.2.419, PubMed: 18488662
Wagenmakers, E. J. (2007). A practical solution to the pervasive problems of p values. Psychonomic Bulletin & Review, 14, 779–804. https://doi.org/10.3758/bf03194105, PubMed: 18087943
Wagner, A. D., Shannon, B. J., Kahn, I., & Buckner, R. L. (2005). Parietal lobe contributions to episodic memory retrieval. Trends in Cognitive Sciences, 9, 445–453. https://doi.org/10.1016/j.tics.2005.07.001, PubMed: 16054861
Zhou, D., Cai, Q., Luo, J., Yi, Z., Li, Y., Seger, C. A., et al. (2021). The neural mechanism of spatial-positional association in working memory: A fMRI study. Brain and Cognition, 152, 105756. https://doi.org/10.1016/j.bandc.2021.105756, PubMed: 34051431