Geophysical Research Letters - 2021 - Lu -A Paleoseismic Record Spanning 2-Myr RevealsEpisodicLate Pliocene Deformation in the Western Qaidam BasinNE Tibet.pdf
paleoseismology; regional deformation; seismites; seismo-tectonic evolution; slump; soft-sediment deformation; Detachment surfaces; Disturbance records; Local deformations; Regional deformations; Sedimentological analysis; Soft-sediment deformation; Tectonic evolution; Western Qaidam basin; Geophysics; Earth and Planetary Sciences (all); General Earth and Planetary Sciences
Abstract :
[en] The western Qaidam Basin, NE Tibet contains numerous NW-SE-trending thrusts that extend over a distance of ∼300 km along the Altyn Tagh Fault and north of the Kunlun Range. However, little is known about the long-term seismo-tectonic evolution of this active thrust zone due to the absence of an extended paleoseismic record. We present a 2-Myr-long disturbance record established from a core drilled on the crest of a thrust-cored anticline. Based on detailed sedimentological analysis, the disturbances (micro-faults, soft-sediment deformation, slumps, and detachment surfaces) are interpreted as paleoearthquake/tectonic indicators. The core records five seismite clusters which occurred at 3.6-3.5, 3.4-3.2, 3.15-3.1, 3.0-2.9, and 2.8-2.75 Ma. This suggests the rate of tectonic strain accommodated by the folds and thrusts in the region varies and thus reveals episodic local deformation. During the clusters, regional deformation is concentrated more in the fold-and-thrust system than along regional major strike-slip faults.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Lu, Yin ; Université de Liège - ULiège > Département de géographie > Géomorphologie et Géologie du Quaternaire ; Institute of Earth Sciences, Heidelberg University, Heidelberg, Germany ; Department of Geology, University of Innsbruck, Innsbruck, Austria
Marco, Shmuel ; Department of Geophysics, Tel Aviv University, Tel Aviv, Israel
Wetzler, Nadav ; Geological Survey of Israel, Jerusalem, Israel
Fang, Xiaomin ; Key Laboratory of Continental Collision and Plateau Uplift, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China ; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, China
Alsop, G. Ian ; Department of Geology & Geophysics, University of Aberdeen, United Kingdom
This research was inspired by Prof. Lin Ding's comments on the doctoral thesis proposal of Yin Lu in May 2014 at the Institute of Tibetan Plateau Research, China. We thank Profs. Todd Ehlers, Erwin Appel, and Oliver Friedrich for fruitful discussions in the early stage of this research. We appreciate the editor Germán Prieto for handling our manuscript, Jérôme Nomade and one anonymous reviewer for constructive reviews. We thank Werner Fielitz for comments, A. Koutsodendris, K. S. Nakajima, and H. Campos for help with lab work, and W. Rösler and H. Schulz for help with core sampling. Financial support was provided by the German Research Foundation (# FR2544/13‐1 to O. Friedrich) and the University of Liege under Special Funds for Research, IPD‐STEMA Program (R.DIVE.0899‐J‐F‐G to Y. Lu).
Agnon, A., Migowski, C., & Marco, S. (2006). Intraclast breccias in laminated sequences reviewed: Recorders of paleo-earthquakes. Geological Society of America Special Paper, 401, 195–214. https://doi.org/10.1130/2006.2401(13)
Alsop, G. I., & Marco, S. (2013). Seismogenic slump folds formed by gravity-driven tectonics down a negligible subaqueous slope. Tectonophysics, 605, 48–69. https://doi.org/10.1016/j.tecto.2013.04.004
Alsop, G. I., Weinberger, R., Marco, S., & Levi, T. (2020). Bed-parallel slip: Identifying missing displacement in mass transport deposits. Journal of Structural Geology, 131, 103952. https://doi.org/10.1016/j.jsg.2019.103952
Avşar, U., Jónsson, S., Avşar, Ö., & Schmidt, S. (2016). Earthquake-induced soft-sediment deformations and seismically amplified erosion rates recorded in varved sediments of Köyceğiz Lake (SW Turkey). Journal of Geophysical Research: Solid Earth, 121(6), 4767–4779. https://doi.org/10.1002/2016JB012820
Bally, A., Chou, I.-M., Clayton, R., Eugster, H., Kidwell, S. M., Meckel, L., et al. (1986). Notes on sedimentary basins in China: Report of the American sedimentary basins delegation to the People's Republic of China. Rep. 2331-1258. US Geological Survey.
Becker, A., Ferry, M., Monecke, K., Schnellmann, M., & Giardini, D. (2005). Multiarchive paleoseismic record of late Pleistocene and Holocene strong earthquakes in Switzerland. Tectonophysics, 400(1), 153–177.
Bendick, R., Bilham, R., Freymueller, J., Larson, K., & Yin, G. (2000). Geodetic evidence for a low slip rate in the Altyn Tagh fault system. Nature, 404(6773), 69–72.
Chen, Z., Burchfiel, B., Liu, Y., King, R., Royden, L., Tang, W., et al. (2000). Global Positioning System measurements from eastern Tibet and their implications for India/Eurasia intercontinental deformation. Journal of Geophysical Research, 105(B7), 16215–16227. https://doi.org/10.1029/2000JB900092
Cowgill, E., Gold, R. D., Xuanhua, C., Xiao-Feng, W., Arrowsmith, J. R., & Southon, J. (2009). Low Quaternary slip rate reconciles geodetic and geologic rates along the Altyn Tagh fault, northwestern Tibet. Geology, 37(7), 647–650. https://doi.org/10.1130/g25623a.1
Field, M. E., Gardner, J. V., Jennings, A. E., & Edwards, B. D. (1982). Earthquake-induced sediment failures on a 0.25° slope, Klamath River delta, California, Geology, 10(10), 542–546.
Freund, R. (1965). A model of the structural development of Israel and adjacent areas since upper Cretaceous times. Geological Magazine, 102(3), 189–205.
Ghazoui, Z., Bertrand, S., Vanneste, K., Yokoyama, Y., Nomade, J., Gajurel, A., & van der Beek, P. (2019). Potentially large post-1505 AD earthquakes in western Nepal revealed by a lake sediment record. Nature Communications, 10(1), 2258.
Greene, H. G., Collot, J. Y., Fisher, M. A., & Crawford, A. J. (1994). Neogene tectonic evolution of the New Hebrides island arc: A review incorporating ODP drilling results. Proceedings of the Ocean Drilling Program, Scientific Results, 134, 19–46. https://doi.org/10.2973/odp.proc.sr.134.002.1994
Guo, Z.-J., Yin, A., Robinson, A., & Jia, C.-Z. (2005). Geochronology and geochemistry of deep-drill-core samples from the basement of the central Tarim basin. Journal of Asian Earth Sciences, 25(1), 45–56.
Heifetz, E., Agnon, A., & Marco, S. (2005). Soft sediment deformation by Kelvin Helmholtz instability: A case from Dead Sea earthquakes. Earth and Planetary Science Letters, 236(1–2), 497–504. https://doi.org/10.1016/j.epsl.2005.04.019
Hubert-Ferrari, A., Armijo, R., King, G., Meyer, B., & Barka, A. (2002). Morphology, displacement, and slip rates along the North Anatolian Fault, Turkey. Journal of Geophysical Research, 107(B10), 2235. https://doi.org/10.1029/2001JB000393
Jackson, W. T., McKay, M. P., Bartholomew, M. J., Allison, D. T., Spurgeon, D. L., Shaulis, B., et al. (2019). Initial Laramide tectonism recorded by Upper Cretaceous paleoseismites in the northern Bighorn Basin, USA: Field indicators of an applied end load stress. Geology, 47(11), 1059–1063. https://doi.org/10.1130/g46738.1
Kaboth-Bahr, S., Koutsodendris, A., Lu, Y., Nakajima, K., Zeeden, C., Appel, E., et al. (2020). A late Pliocene to early Pleistocene (3.3–2.1 Ma) orbital chronology for the Qaidam Basin paleolake (NE Tibetan Plateau) based on the SG-1b drillcore record. Newsletters on Stratigraphy, 53(4), 479–496. https://doi.org/10.1127/nos/2020/0555
Ken-Tor, R., Agnon, A., Enzel, Y., Stein, M., Marco, S., & Negendank, J. F. W. (2001). High-resolution geological record of historic earthquakes in the Dead Sea basin. Journal of Geophysical Research, 106(B2), 2221–2234.
Liu, R., Allen, M. B., Zhang, Q., Du, W., Cheng, X., Holdsworth, R. E., & Guo, Z. (2017). Basement controls on deformation during oblique convergence: Transpressive structures in the western Qaidam Basin, northern Tibetan Plateau. Lithosphere, 9(4), 583–594. https://doi.org/10.1130/l634.1
Lu, Y., Dewald, N., Koutsodendris, A., Kaboth-Bahr, S., Rössler, W., Pross, J., et al. (2020b). Sedimentological evidence for pronounced glacial-interglacial climate fluctuations in NE Tibet in the latest Pliocene to early Pleistocene. Paleoceanography and Paleoclimatology, 35(5), e2020PA003864. https://doi.org/10.1029/2020PA003864
Lu, Y., Fang, X., Appel, E., Wang, J., Herb, C., Han, W., et al. (2015). A 7.3-1.6 Ma grain size record of interaction between anticline uplift and climate change in the western Qaidam Basin, NE Tibetan Plateau. Sedimentary Geology, 319, 40–51. https://doi.org/10.1016/j.sedgeo.2015.01.008
Lu, H., Ye, J., Guo, L., Pan, J., Xiong, S., & Li, H. (2018). Towards a clarification of the provenance of Cenozoic sediments in the northern Qaidam Basin. Lithosphere, 11(2), 252–272. https://doi.org/10.1130/l1037.1
Lu, Y., Moernaut, J., Bookman, R., Waldmann, N., Wetzler, N., Agnon, A., et al. (2021). A new approach to constrain the seismic origin for prehistoric turbidites as applied to the Dead Sea Basin. Geophysical Research Letters, 48(3), e2020GL090947. https://doi.org/10.1029/2020GL090947
Lu, Y., Waldmann, N., Ian Alsop, G., & Marco, S. (2017). Interpreting soft sediment deformation and mass transport deposits as seismites in the Dead Sea depocenter. Journal of Geophysical Research: Solid Earth, 122, 8305–8325. https://doi.org/10.1002/2017JB014342
Lu, Y., Wetzler, N., Waldmann, N., Agnon, A., Biasi, G., & Marco, S. (2020a). A 220,000-year-long continuous large earthquake record on a slow-slipping plate boundary. Science Advances, 6, eaba4170.
Métivier, F., Gaudemer, Y., Tapponnier, P., & Meyer, B. (1998). Northeastward growth of the Tibet plateau deduced from balanced reconstruction of two depositional areas: The Qaidam and Hexi Corridor basins, China. Tectonics, 17(6), 823–842.
Meyer, B., Tapponnier, P., Bourjot, L., Metivier, F., Gaudemer, Y., Peltzer, G., et al. (1998). Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau. Geophysical Journal International, 135(1), 1–47.
Miller, D. D. (1998). Distributed shear, rotation, and partitioned strain along the San Andreas fault, central California. Geology, 26(10), 867–870.
Moernaut, J., Daele, M. V., Heirman, K., Fontijn, K., Strasser, M., Pino, M., et al. (2014). Lacustrine turbidites as a tool for quantitative earthquake reconstruction: New evidence for a variable rupture mode in south central Chile. Journal of Geophysical Research: Solid Earth, 119(3), 1607–1633. https://doi.org/10.1002/2013jb010738
Molina, J., Alfaro, P., Moretti, M., & Soria, J. (1998). Soft-sediment deformation structures induced by cyclic stress of storm waves in tempestites (Miocene, Guadalquivir Basin, Spain). Terra Nova, 10, 145–150.
Monecke, K., Anselmetti, F. S., Becker, A., Sturm, M., & Giardini, D. (2004). The record of historic earthquakes in lake sediments of Central Switzerland. Tectonophysics, 394(1), 21–40.
Owen, G., Moretti, M., & Alfaro, P. (2011). Recognising triggers for soft-sediment deformation: Current understanding and future directions. Sedimentary Geology, 235(3–4), 133–140. https://doi.org/10.1016/j.sedgeo.2010.12.010
Piper, D. J., Shor, A. N., & Clarke, J. E. H. (1988). The 1929 “Grand Banks” earthquake, slump, and turbidity current. Geological Society of America Special Paper, 229, 77–92.
Plan, L., Grasemann, B., Spötl, C., Decker, K., Boch, R., & Kramers, J. (2010). Neotectonic extrusion of the Eastern Alps: Constraints from U/Th dating of tectonically damaged speleothems. Geology, 38(6), 483–486. https://doi.org/10.1130/g30854.1
Schnellmann, M., Anselmetti, F. S., Giardini, D., McKenzie, J. A., & Ward, S. N. (2002). Prehistoric earthquake history revealed by lacustrine slump deposits. Geology, 30(12), 1131–1134.
Seilacher, A. (1969). Fault-graded beds interpreted as seismites. Sedimentology, 13(1–2), 155–159.
Shao, Y., Liu-Zeng, J., Oskin, M. E., Elliott, A. J., Wang, P., Zhang, J., et al. (2018). Paleoseismic investigation of the Aksay Restraining Double Bend, Altyn Tagh Fault, and its implication for barrier-breaching ruptures. Journal of Geophysical Research: Solid Earth, 123(5), 4307–4330. https://doi.org/10.1029/2017JB015397
Shilts, W., & Clague, J. J. (1992). Documentation of earthquake-induced disturbance of lake sediments using subbottom acoustic profiling. Canadian Journal of Earth Sciences, 29(5), 1018–1042.
Sims, J. D. (1973). Earthquake-induced structures in sediments of Van Norman Lake, San Fernando, California. Science, 182(4108), 161–163.
Tapponnier, P. (2001). Oblique stepwise rise and growth of the Tibet plateau. Science, 294(5547), 1671–1677. https://doi.org/10.1126/science.105978
Taylor, M., & Yin, A. (2009). Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism. Geosphere, 5(3), 199–214.
Van Der Woerd, J., Tapponnier, P., Ryerson, F. J., Meriaux, A.-S., Meyer, B., Gaudemer, Y., et al. (2002). Uniform postglacial slip-rate along the central 600 km of the Kunlun Fault (Tibet), from 26Al, 10Be, and 14C dating of riser offsets, and climatic origin of the regional morphology. Geophysical Journal International, 148(3), 356–388.
Wang, M., & Shen, Z. K. (2020). Present-day crustal deformation of continental China derived from GPS and its tectonic implications. Journal of Geophysical Research: Solid Earth, 125(2), e2019JB018774. https://doi.org/10.1029/2019JB018774
Wetzler, N., Marco, S., & Heifetz, E. (2010). Quantitative analysis of seismogenic shear-induced turbulence in lake sediments. Geology, 38(4), 303–306. https://doi.org/10.1130/g30685.1
Wilhelm, B., Nomade, J., Crouzet, C., Litty, C., Sabatier, P., Belle, S., et al. (2016). Quantified sensitivity of small lake sediments to record historic earthquakes: Implications for paleoseismology. Journal of Geophysical Research: Earth Surface, 121(1), 2–16. https://doi.org/10.1002/2015jf003644
Wu, L., Lin, X., Cowgill, E., Xiao, A., Cheng, X., Chen, H., et al. (2019). Middle Miocene reorganization of the Altyn Tagh fault system, northern Tibetan Plateau. Geological Society of America Bulletin, 131(7–8), 1157–1178. https://doi.org/10.1130/b31875.1
Yin, A. (2010). Cenozoic tectonic evolution of Asia: A preliminary synthesis. Tectonophysics, 488(1–4), 293–325. https://doi.org/10.1016/j.tecto.2009.06.002
Yin, A., Dang, Y. Q., Zhang, M., Chen, X. H., & McRivette, M. W. (2008). Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (Part 3): Structural geology, sedimentation, and regional tectonic reconstruction. Geological Society of America Bulletin, 120(7–8), 847–876. https://doi.org/10.1130/b26232.1
Yin, A., Rumelhart, P. E., Butler, R., Cowgill, E., Harrison, T. M., Foster, D. A., et al. (2002). Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation. Geological Society of America Bulletin, 114(10), 1257–1295. https://doi.org/10.1130/0016-7606(2002)114<1257:thotat>2.0.co;2
Yuan, D., Ge, W., Chen, Z., Li, C., Wang, Z., Zhang, H., et al. (2013). The growth of northeastern Tibet and its relevance to large-scale continental geodynamics: A review of recent studies. Tectonics, 32(5), 1358–1370. https://doi.org/10.1002/tect.20081
Yuan, Z., Liu-Zeng, J., Wang, W., Weldon, R. J., Oskin, M. E., Shao, Y., et al. (2018). A 6000-year-long paleoseismologic record of earthquakes along the Xorkoli section of the Altyn Tagh fault, China. Earth and Planetary Science Letters, 497, 193–203. https://doi.org/10.1016/j.epsl.2018.06.008
Zhang, S., Wang, D., Liu, X., Zhang, G., Zhao, J., Luo, M., et al. (2008). Using borehole core analysis to reveal Late Quaternary paleoearthquakes along the Nankou-Sunhe Fault, Beijing. Science in China - Series D: Earth Sciences, 51(8), 1154–1168.
Zhang, W., Appel, E., Fang, X., Song, C., Setzer, F., Herb, C., & Yan, M. (2014). Magnetostratigraphy of drill-core SG-1b in the western Qaidam Basin (NE Tibetan Plateau) and tectonic implications. Geophysical Journal International, 197(1), 90–118. https://doi.org/10.1093/gji/ggt439