Geophysical Research Letters - 2021 - Lu - Orbital- and Millennial-Scale Changes in LakeLevels Facilitate Earthquake-Triggered Mass Failures in the Dead Sea Basin.pdf
Dead Sea; mass failures; preconditioning factors; sea-level change; sedimentation rate; triggers; Accurate testing; Cause-and-effect relationships; Dead sea basins; Large amplitude; Mass failures; Sedimentation rates; Statistical evaluation; Submarine mass failure; Geophysics; Earth and Planetary Sciences (all); General Earth and Planetary Sciences
Abstract :
[en] The possible link between the occurrence of submarine mass failure and climate-driven factors is highly disputed. This is due largely to the lack of comprehensive records of mass failures in the geologic record for which ages, triggers, and preconditioning factors can be reliably constrained. Such controls would allow accurate testing of cause-and-effect relationships. We present a record that comprises 490 earthquake-triggered mass failure deposits from the Dead Sea depocenter over the past 220 kyr that permits a robust statistical evaluation and correlation with potential preconditioning factors. Our data set reveals that (a) at the orbital- and millennial-scale, variable sedimentation rates are not a preconditioning factor for these mass failure deposits; (b) at the centennial-to decadal-scale, earthquake-triggered mass failures can occur at any lake-level state; (c) at the orbital- and millennial-scale, the mass failures are more frequent when lake-levels were high and punctuated by large-amplitude fluctuations.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Lu, Yin ; Université de Liège - ULiège > Département de géographie > Géomorphologie et Géologie du Quaternaire ; Institute of Geology, University of Innsbruck, Innsbruck, Austria
Moernaut, Jasper ; Institute of Geology, University of Innsbruck, Innsbruck, Austria
Waldmann, Nicolas ; Department of Marine Geosciences, University of Haifa, Haifa, Israel
Bookman, Revital; Department of Marine Geosciences, University of Haifa, Haifa, Israel
Ian Alsop, G. ; Department of Geology & Geophysics, University of Aberdeen, Scotland, United Kingdom
FWF - Austrian Science Fund ISF - Israel Science Foundation
Funding text :
The authors appreciate the editor L. Flesch for handling our manuscript, Ed Pope and Sebastian Cardona for constructive reviews. This research was supported by the Austrian Science Fund (FWF): M 2817 to Y. Lu and P30285‐N34 to J. Moernaut, the University of Liege under Special Funds for Research, IPD‐STEMA Program (R.DIVE.0899‐J‐F‐G to Y. Lu), the Israel Science Foundation (#1645/19 to S. Marco and #1093/10 to R. Bookman), and the ICDP. A.A. is indebted to the Helmholtz Virtual Institute DESERVE for support. The authors thank C. Daxer for help modeling the Kernel Density and Nadav Wetzler for discussion.The authors appreciate the editor L. Flesch for handling our manuscript, Ed Pope and Sebastian Cardona for constructive reviews. This research was supported by the Austrian Science Fund (FWF): M 2817 to Y. Lu and P30285-N34 to J. Moernaut, the University of Liege under Special Funds for Research, IPD-STEMA Program (R.DIVE.0899-J-F-G to Y. Lu), the Israel Science Foundation (#1645/19 to S. Marco and #1093/10 to R. Bookman), and the ICDP. A.A. is indebted to the Helmholtz Virtual Institute DESERVE for support. The authors thank C. Daxer for help modeling the Kernel Density and Nadav Wetzler for discussion.
Alsop, G. I., Marco, S., Weinberger, R., & Levi, T. (2016). Sedimentary and structural controls on seismogenic slumping within mass transport deposits from the Dead Sea basin. Sedimentary Geology, 344, 71–90. https://doi.org/10.1016/j.sedgeo.2016.02.019
Alsop, G. I., Weinberger, R., Marco, S., & Levi, T. (2019). Identifying soft-sediment deformation in rocks. Journal of Structural Geology, 125, 248–255. https://doi.org/10.1016/j.jsg.2017.09.001
Anselmetti, F. S., Ariztegui, D., De Batist, M., Catalina Gebhardt, A., Haberzettl, T., Niessen, F., et al. (2009). Environmental history of southern Patagonia unraveled by the seismic stratigraphy of Laguna Potrok Aike. Sedimentology, 56(4), 873–892. https://doi.org/10.1111/j.1365-3091.2008.01002.x
Barkan, E., Luz, B., & Lazar, B. (2001). Dynamics of the carbon dioxide system in the Dead Sea. Geochimica et Cosmochimica Acta, 65, 355–368. https://doi.org/10.1016/s0016-7037(00)00540-8
Bartov, Y., Agnon, A., Enzel, Y., & Stein, M. (2006). Late quaternary faulting and subsidence in the central Dead Sea basin. Israel Journal of Earth Sciences, 55, 17–31. https://doi.org/10.1560/k74u-0772-1642-6282
Ben-Avraham, Z., Garfunkel, Z., & Lazar, M. (2008). Geology and evolution of the southern Dead Sea Fault with emphasis on subsurface structure. Annual Review of Earth and Planetary Sciences, 36, 357–387. https://doi.org/10.1146/annurev.earth.36.031207.124201
Blumberg, S., Lamy, F., Arz, H. W., Echtler, H. P., Wiedicke, M., Haug, G. H., & Oncken, O. (2008). Turbiditic trench deposits at the South-Chilean active margin: A Pleistocene-Holocene record of climate and tectonics. Earth and Planetary Science Letters, 268(3–4), 526–539. https://doi.org/10.1016/j.epsl.2008.02.007
Bookman, R., Bartov, Y., Enzel, Y., & Stein, M. (2006). Quaternary lake levels in the Dead Sea basin: Two centuries of research. Geological Society of America Special Papers, 401, 155–170.
Brothers, D. S., Luttrell, K. M., & Chaytor, J. D. (2013). Sea-level-induced seismicity and submarine landslide occurrence. Geology, 41(9), 979–982. https://doi.org/10.1130/G34410.1
Cardona, S., Wood, L. J., Dugan, B., Jobe, Z., Strachan, L. J., & Baas, J. (2020). Characterization of the Rapanui mass-transport deposit and the basal shear zone: Mount Messenger formation, Taranaki basin, New Zealand. Sedimentology, 67(4), 2111–2148. https://doi.org/10.1111/sed.12697
Closson, D., Abou Karaki, N., & Hallot, F. (2010). Landslides along the Jordanian Dead Sea coast triggered by the lake level lowering. Environmental Earth Sciences, 59(7), 1417–1430. https://doi.org/10.1007/s12665-009-0128-z
Coianiz, L., Ben-Avraham, Z., Stein, M., & Lazar, M. (2019). Spatial and temporal reconstruction of the late quaternary Dead Sea sedimentary facies from geophysical properties. Journal of Applied Geophysics, 160, 15–27. https://doi.org/10.1016/j.jappgeo.2018.11.002
Dente, E., Lensky, N. G., Morin, E., & Enzel, Y. (2021). From straight to deeply incised meandering channels: Slope impact on sinuosity of confined streams. Earth Surface Processes and Landforms, 46(5), 1041–1054. https://doi.org/10.1002/esp.5085
Flemings, P. B., Stump, B. B., Finkbeiner, T., & Zoback, M. (2002). Flow focusing in overpressured sandstones: Theory, observations, and applications. American Journal of Science, 302(10), 827–855. https://doi.org/10.2475/ajs.302.10.827
Goldstein, S. L., Kiro, Y., Torfstein, A., Kitagawa, H., Tierney, J., & Stein, M. (2020). Revised chronology of the ICDP Dead Sea deep drill core relates drier-wetter-drier climate cycles to insolation over the past 220 kyr. Quaternary Science Reviews, 244, 106460. https://doi.org/10.1016/j.quascirev.2020.106460
Haliva-Cohen, A., Stein, M., Goldstein, S. L., Sandler, A., & Starinsky, A. (2012). Sources and transport routes of fine detritus material to the late quaternary Dead Sea basin. Quaternary Science Reviews, 50, 55–70. https://doi.org/10.1016/j.quascirev.2012.06.014
Hampton, M. A., Lee, H. J., & Locat, J. (1996). Submarine landslides. Reviews of Geophysics, 34(1), 33–59. https://doi.org/10.1029/95rg03287
Hassan, M. A., & Klein, M. (2002). Fluvial adjustment of the Lower Jordan River to a drop in the Dead Sea level. Geomorphology, 45(1–2), 21–33. https://doi.org/10.1016/s0169-555x(01)00187-8
Huhn, K., Arroyo, M., Cattaneo, A., Clare, M. A., Gràcia, E., Harbitz, C. B., et al. (2019). Modern submarine landslide complexes: A short review. In K. Ogata, A. Festa, & G. Andrea Pini (Eds.), Submarine landslides: Subaqueous mass transport deposits from outcrops to seismic profiles (pp. 181–200). AGU. https://doi.org/10.1002/9781119500513.ch12
Ken-Tor, R., Agnon, A., Enzel, Y., Stein, M., Marco, S., & Negendank, J. F. W. (2001). High-resolution geological record of historic earthquakes in the Dead Sea basin. Journal of Geophysical Research, 106(B2), 2221–2234. https://doi.org/10.1029/2000jb900313
Kiro, Y., Goldstein, S. L., Lazar, B., & Stein, M. (2015). Environmental implications of salt facies in the Dead Sea. The Geological Society of America Bulletin, 128(5–6), 824–841. https://doi.org/10.1130/b31357.1
Kitagawa, H., Stein, M., Goldstein, S. L., Nakamura, A., Lazar, B., & Party, D. S. (2017). Radiocarbon chronology of the DSDDP core at the deepest floor of the Dead Sea. Radiocarbon, 59(2), 383–394. https://doi.org/10.1017/rdc.2016.120
Leynaud, D., Sultan, N., & Mienert, J. (2007). The role of sedimentation rate and permeability in the slope stability of the formerly glaciated Norwegian continental margin: The Storegga slide model. Landslides, 4(4), 297–309. https://doi.org/10.1007/s10346-007-0086-z
Lu, Y., Bookman, R., Waldmann, N., & Marco, S. (2020). A 45 kyr laminae record from the Dead Sea: Implications for basin erosion and floods recurrence. Quaternary Science Reviews, 229, 106143. https://doi.org/10.1016/j.quascirev.2019.106143
Lu, Y., Moernaut, J., Bookman, R., Waldmann, N., Wetzler, N., Agnon, A., et al. (2021). A new approach to constrain the seismic origin for prehistoric turbidites as applied to the Dead Sea basin. Geophysical Research Letters, 48(3), e2020GL090947. https://doi.org/10.1029/2020GL090947
Lu, Y., Waldmann, N., Ian Alsop, G., & Marco, S. (2017). Interpreting soft sediment deformation and mass transport deposits as seismites in the Dead Sea depocenter. Journal of Geophysical Research: Solid Earth, 122, 8305–8325. https://doi.org/10.1002/2017JB014342
Lu, Y., Waldmann, N., Nadel, D., & Marco, S. (2017). Increased sedimentation following the Neolithic Revolution in the Southern Levant. Global and Planetary Change, 152, 199–208. https://doi.org/10.1016/j.gloplacha.2017.04.003
Lu, Y., Wetzler, N., Waldmann, N., Agnon, A., Biasi, G., & Marco, S. (2020). A 220,000-year-long continuous large earthquake record on a slow-slipping plate boundary. Science Advances, 6(48), eaba4170. https://doi.org/10.1126/sciadv.aba4170
Marco, S., & Agnon, A. (1995). Prehistoric earthquake deformations near Masada, Dead Sea Graben. Geology, 23(8), 695–698. https://doi.org/10.1130/0091-7613(1995)023<0695:pednmd>2.3.co;2
McHugh, C. M., Damuth, J. E., & Mountain, G. S. (2002). Cenozoic mass-transport facies and their correlation with relative sea-level change, New Jersey continental margin. Marine Geology, 184(3), 295–334. https://doi.org/10.1016/s0025-3227(01)00240-7
McHugh, C. M., Kanamatsu, T., Seeber, L., Bopp, R., Cormier, M.-H., & Usami, K. (2016). Remobilization of surficial slope sediment triggered by the A.D. 2011 Mw9 Tohoku-Oki earthquake and tsunami along the Japan Trench. Geology, 44(5), 391–394. https://doi.org/10.1130/g37650.1
Moernaut, J., Van Daele, M., Strasser, M., Clare, M. A., Heirman, K., Viel, M., et al. (2017). Lacustrine turbidites produced by surficial slope sediment remobilization: A mechanism for continuous and sensitive turbidite paleoseismic records. Marine Geology, 384, 159–176. https://doi.org/10.1016/j.margeo.2015.10.009
Molenaar, A., Van Daele, M., Vandorpe, T., Degenhart, G., De Batist, M., Urrutia, R., et al. (2021). What controls the remobilization and deformation of surficial sediment by seismic shaking? Linking lacustrine slope stratigraphy to great earthquakes in South-Central Chile. Sedimentology. https://doi.org/10.1111/sed.12856
Morin, E., Ryb, T., Gavrieli, I., & Enzel, Y. (2018). Mean, variance, and trends of Levant precipitation over the past 4500 years from reconstructed Dead Sea levels and stochastic modeling. Quaternary Research, 91(2), 751–767. https://doi.org/10.1017/qua.2018.98
Neugebauer, I., Brauer, A., Schwab, M. J., Waldmann, N. D., Enzel, Y., Kitagawa, H., et al. (2014). Lithology of the long sediment record recovered by the ICDP Dead Sea Deep Drilling Project (DSDDP). Quaternary Science Reviews, 102, 149–165. https://doi.org/10.1016/j.quascirev.2014.08.013
Neves, M. C., Roque, C., Luttrell, K. M., Vázquez, J. T., & Alonso, B. (2016). Impact of sea-level rise on earthquake and landslide triggering offshore the Alentejo margin (SW Iberia). Geo-Marine Letters, 36(6), 415–424. https://doi.org/10.1007/s00367-016-0459-1
Nisbet, E. G., & Piper, D. J. (1998). Giant submarine landslides. Nature, 392(6674), 329–330. https://doi.org/10.1038/32765
Owen, M., Day, S., & Maslin, M. (2007). Late Pleistocene submarine mass movements: Occurrence and causes. Quaternary Science Reviews, 26(7–8), 958–978. https://doi.org/10.1016/j.quascirev.2006.12.011
Pope, E. L., Talling, P. J., & Carter, L. (2017). Which earthquakes trigger damaging submarine mass movements: Insights from a global record of submarine cable breaks? Marine Geology, 384, 131–146. https://doi.org/10.1016/j.margeo.2016.01.009
Pope, E. L., Talling, P. J., Urlaub, M., Hunt, J. E., Clare, M. A., & Challenor, P. (2015). Are large submarine landslides temporally random or do uncertainties in available age constraints make it impossible to tell? Marine Geology, 369, 19–33. https://doi.org/10.1016/j.margeo.2015.07.002
Sade, A., Hall, J., Sade, H., Amit, G., Tibor, G., Schulze, B., et al. (2014). Multibeam Bathymetric Map of the Dead Sea. Geological Survey of Israel report GSI/01/2014. Retrieved from http://www.gsi.gov.il/_uploads/ftp/Maps/Shaded-batimetry_map-Dead-Sea-Poster-Front-300dpi.pdf
Sammartini, M., Moernaut, J., Anselmetti, F. S., Hilbe, M., Lindhorst, K., Praet, N., & Strasser, M. (2019). An atlas of mass-transport deposits in lakes. In K. Ogata, A. Festa, & G. Andrea Pini (Eds.), Submarine landslides: Subaqueous mass transport deposits from outcrops to seismic profiles (pp. 201–226). AGU. https://doi.org/10.1002/9781119500513.ch13
Sawyer, D. E., Reece, R. S., Gulick, S. P., & Lenz, B. L. (2017). Submarine landslide and tsunami hazards offshore southern Alaska: Seismic strengthening versus rapid sedimentation. Geophysical Research Letters, 44(16), 8435–8442. https://doi.org/10.1002/2017gl074537
Smith, D. E., Harrison, S., & Jordan, J. T. (2013). Sea level rise and submarine mass failures on open continental margins. Quaternary Science Reviews, 82(0), 93–103. https://doi.org/10.1016/j.quascirev.2013.10.012
Stein, M., Starinsky, A., Katz, A., Goldstein, S. L., Machlus, M., & Schramm, A. (1997). Strontium isotopic, chemical, and sedimentological evidence for the evolution of Lake Lisan and the Dead Sea. Geochimica et Cosmochimica Acta, 61, 3975–3992. https://doi.org/10.1016/s0016-7037(97)00191-9
Stigall, J., & Dugan, B. (2010). Overpressure and earthquake initiated slope failure in the Ursa region, northern Gulf of Mexico. Journal of Geophysical Research, 115(B4), B04101. https://doi.org/10.1029/2009jb006848
Talling, P., Clare, M., Urlaub, M., Pope, E., Hunt, J., & Watt, S. (2014). Large submarine landslides on continental slopes: Geohazards, methane release, and climate change. Oceanography, 27(2), 32–45. https://doi.org/10.5670/oceanog.2014.38
Ten Brink, U. S., Andrews, B., & Miller, N. (2016). Seismicity and sedimentation rate effects on submarine slope stability. Geology, 44(7), 563–566. https://doi.org/10.1130/g37866.1
Torfstein, A. (2019). Climate cycles in the southern Levant and their global climatic connections. Quaternary Science Reviews, 221, 105881. https://doi.org/10.1016/j.quascirev.2019.105881
Torfstein, A., Goldstein, S. L., Kagan, E. J., & Stein, M. (2013). Integrated multi-site U-Th chronology of the last glacial Lake Lisan. Geochimica et Cosmochimica Acta, 104, 210–231. https://doi.org/10.1016/j.gca.2012.11.003
Torfstein, A., Goldstein, S. L., Kushnir, Y., Enzel, Y., Haug, G., & Stein, M. (2015). Dead Sea drawdown and monsoonal impacts in the Levant during the last interglacial. Earth and Planetary Science Letters, 412, 235–244. https://doi.org/10.1016/j.epsl.2014.12.013
Torfstein, A., Goldstein, S. L., Stein, M., & Enzel, Y. (2013). Impacts of abrupt climate changes in the Levant from Last Glacial Dead Sea levels. Quaternary Science Reviews, 69, 1–7. https://doi.org/10.1016/j.quascirev.2013.02.015
Trincardi, F., Cattaneo, A., Correggiari, A., Mongardi, S., Breda, A., & Asioli, A. (2003). Submarine slides during relative sea level rise: Two examples from the eastern Tyrrhenian margin. In Submarine mass movements and their consequences (pp. 469–478). Springer. https://doi.org/10.1007/978-94-010-0093-2_52
Urlaub, M., Talling, P. J., & Masson, D. G. (2013). Timing and frequency of large submarine landslides: Implications for understanding triggers and future geohazard. Quaternary Science Reviews, 72, 63–82. https://doi.org/10.1016/j.quascirev.2013.04.020
Urlaub, M., Talling, P. J., Zervos, A., & Masson, D. (2015). What causes large submarine landslides on low gradient (<2°) continental slopes with slow (∼0.15 m/kyr) sediment accumulation? Journal of Geophysical Research: Solid Earth, 120(10), 6722–6739. https://doi.org/10.1002/2015jb012347
Waldmann, N., Torfstein, A., & Stein, M. (2010). Northward intrusions of low-and mid-latitude storms across the Saharo-Arabian belt during past interglacials. Geology, 38(6), 567–570. https://doi.org/10.1130/g30654.1
Weltje, G. J., Bloemsma, M., Tjallingii, R., Heslop, D., Röhl, U., & Croudace, I. W. (2015). Prediction of geochemical composition from XRF core scanner data: A new multivariate approach including automatic selection of calibration samples and quantification of uncertainties. In Micro-XRF studies of sediment cores (pp. 507–534). Springer. https://doi.org/10.1007/978-94-017-9849-5_21
Wetzler, N., Marco, S., & Heifetz, E. (2010). Quantitative analysis of seismogenic shear-induced turbulence in lake sediments. Geology, 38(4), 303–306. https://doi.org/10.1130/g30685.1
Bookman, R., Filin, S., Avni, Y., Rosenfeld, D., & Marco, S. (2014). Possible connection between large volcanic eruptions and level rise episodes in the Dead Sea Basin. Quaternary Science Reviews, 89, 123–128. https://doi.org/10.1016/j.quascirev.2014.02.009