Condensed Matter Physics; General Materials Science; General Chemistry
Abstract :
[en] We explore the effect of anion ordering on the ferroelectric properties of the oxyfluoride Aurivillius Bi2TiO4F2 from first-principles calculations. We first identify the phonon instabilities in the high symmetry reference phases and build the energy diagram for the different low symmetry metastable phases coming from these instabilities. We found that the apical ordering of fluorine is more stable than the equatorial one but mixing apical and equatorial ordering together is even more favorable. For each fluorine ordering, the ground state is polar and exhibits a proper in-plane polarization. We also found that the apical ordering can exhibit a proper out-of plane polarization as large as 35 μc/cm2, which is unexpected in layered crystals. This finding opens the possibility to design polarization perpendicular to the stacking layers in ferroelectrics layered perovskites through multianion engineering, a property strongly desired for technological applications like FeRAM devices.
Disciplines :
Physics
Author, co-author :
Benomar, Sarah
Bousquet, Eric ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM)
Djani, Hania
Language :
English
Title :
Multianion induced out-of-plane proper polarization in oxyfluoride Aurivillius Bi2TiO4F2
Publication date :
2022
Journal title :
Journal of Physics and Chemistry of Solids
ISSN :
0022-3697
Publisher :
Elsevier BV
Volume :
167
Pages :
110720
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif Tier-1 supercomputer
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Inaguma, Y., Greneche, J.-M., Crosnier-Lopez, M.-P., Katsumata, T., Calage, Y., Fourquet, J.-L., Structure and mössbauer studies of fo ordering in antiferromagnetic perovskite PbFeO2F. Chem. Mater. 17:6 (2005), 1386–1390, 10.1021/cm048125g.
Fuertes, A., Metal oxynitrides as emerging materials with photocatalytic and electronic properties. Mater. Horiz. 2 (2015), 453–461, 10.1039/C5MH00046G.
Gelves-Badillo, J.S., Romero, A.H., Garcia-Castro, A.C., Unveiling the mechanisms behind the ferroelectric response in the Sr(Nb,Ta)O2N oxynitrides. Phys. Chem. Chem. Phys., 2021, 10.1039/D1CP01716K.
Larquet, C., Carenco, S., Metal oxysulfides: from bulk compounds to nanomaterials. Front. Chem., 8, 2020, 179, 10.3389/fchem.2020.00179 https://www.frontiersin.org/article/10.3389/fchem.2020.00179.
Wissel, K., Heldt, J., Groszewicz, P.B., Dasgupta, S., Breitzke, H., Donzelli, M., Waidha, A.I., Fortes, A.D., Rohrer, J., Slater, P.R., Buntkowsky, G., Clemens, O., Topochemical fluorination of La2NiO4+d: unprecedented ordering of oxide and fluoride ions in La2NiO3F2. Inorg. Chem. 57:11 (2018), 6549–6560, 10.1021/acs.inorgchem.8b00661.
H. Kageyama, K. Maeda, J. P. Attfield, Z. Hiroi, J. M. Rondinelli, K. R. Poeppelmeier, Expanding frontiers in materials chemistry and physics with multiple anions, Nat. Commun. 9 (772). doi:10.1080/00150198808008870. URL https://doi.org/10.1038/s41467-018-02838-4.
Kobayashi, Y., Tsujimoto, Y., Kageyama, H., Property engineering in perovskites via modification of anion chemistry. arXiv: Annu. Rev. Mater. Res. 48:1 (2018), 303–326, 10.1146/annurev-matsci-070317-124415.
Wang, J., Shin, Y., Paudel, J.R., Grassi, J.D., Sah, R.K., Yang, W., Karapetrova, E., Zaidan, A., Strocov, V.N., Klewe, C., Shafer, P., Gray, A.X., Rondinelli, J.M., May, S.J., Strain-induced anion-site occupancy in perovskite oxyfluoride films. arXiv: Chem. Mater. 33:5 (2021), 1811–1820, 10.1021/acs.chemmater.0c04793.
H. Djani, A. C. Garcia-Castro, W.-Y. Tong, P. Barone, E. Bousquet, S. Picozzi, P. Ghosez, Rationalizing and engineering rashba spin-splitting in ferroelectric oxides, npj Quant. Mater. 4 (51). doi:10.1038/s41535-019-0190-z.
Aurivillius, B., Mixed bismuth oxides with layer lattices. 1. the structure type of CaNb2Bi2O9. Arki for Kemi 1 (1949), 463–480.
Perez-Mato, J.M., Blaha, P., Schwarz, K., Aroyo, M., Orobengoa, D., Etxebarria, I., García, A., Multiple instabilities in Bi4Ti3O12: a ferroelectric beyond the soft-mode paradigm. Phys. Rev. B, 77, 2008, 184104, 10.1103/PhysRevB.77.184104.
Withers, R.L., Thompson, J.G., Rae, A.D., The crystal chemistry underlying ferroelectricity in Bi4Ti3O12, Bi4TiNbO9 and Bi2WO6. J. Solid State Chem. 94 (1991), 404–417.
Perez-Mato, J.M., Aroyo, M., García, A., Blaha, P., Schwarz, K., Schweifer, J., Parlinski, K., Competing structural instabilities in the ferroelectric aurivillius compound SrBi2Ta2O9. Phys. Rev. B, 70, 2004, 214111.
Etxebarria, I., Perez-Mato, J.M., Boullay, P., The role of trilinear couplings in the phase transitions of Aurivillius compounds. Ferroelectrics 401 (2010), 17–23.
Hervoches, C.H., Snedden, A., Riggs, R., Kilcoyne, S.H., Manuel, P., Lightfoot, P., Structural behavior of the four-layer aurivillius-phase ferroelectrics SrBi4Ti4O15 and Bi5Ti3FeO15. J. Solid State Chem. 164:2 (2002), 280–291, 10.1006/jssc.2001.9473 https://www.sciencedirect.com/science/article/pii/S0022459601994733.
Benedek, N.A., Rondinelli, J.M., Djani, H., Ghosez, P., Lightfoot, P., Understanding ferroelectricity in layered perovskites: new ideas and insights from theory and experiments. Dalton Trans. 44 (2015), 10543–10558, 10.1039/C5DT00010F.
Aurivillius, B., The structure of Bi2NbO5F and isomorphous compounds. Arkiv for kemi 5:1 (1953), 39–47.
Needs, R.L., Dann, S.E., Weller, M.T., Cherryman, J.C., Harris, R.K., The structure and oxide/fluoride ordering of the ferroelectrics Bi2TiO4F2 and Bi2NbO5F. J. Mater. Chem. 15 (2005), 2399–2407, 10.1039/B502499D.
McCabe, E.E., Jones, I.P., Zhang, D., Hyatt, N.C., Greaves, C., Crystal structure and electrical characterisation of Bi2NbO5F: an aurivillius oxide fluoride. J. Mater. Chem. 17 (2007), 1193–1200, 10.1039/B613970A.
Thorp, H.H., Bond valence sum analysis of metal-ligand bond lengths in metalloenzymes and model complexes. arXiv: Inorg. Chem. 31:9 (1992), 1585–1588, 10.1021/ic00035a012.
Giddings, A.T., Scott, E.A.S., Stennett, M.C., Apperley, D.C., Greaves, C., Hyatt, N.C., McCabe, E.E., Symmetry and the role of the anion sublattice in aurivillius oxyfluoride Bi2TiO4F2. Inorg. Chem. 60:18 (2021), 14105–14115, 10.1021/acs.inorgchem.1c01933.
Kohn, W., Sham, L.J., Self-consistent equations including exchange and correlation effects. Phys. Rev. 140 (1965), A1133–A1138, 10.1103/PhysRev.140.A1133.
Hohenberg, P., Kohn, W., Inhomogeneous electron gas. Phys. Rev. 136 (1964), B864–B871, 10.1103/PhysRev.136.B864.
Gonze, X., et al. Recent developments in the abinit software package. Comput. Phys. Commun. 205 (2016), 106–131, 10.1016/j.cpc.2016.04.003.
Gonze, X., Amadon, B., Antonius, G., Arnardi, F., Baguet, L., Beuken, J.-M., Bieder, J., Bottin, F., Bouchet, J., Bousquet, E., Brouwer, N., Bruneval, F., Brunin, G., Cavignac, T., Charraud, J.-B., Chen, W., Côté, M., Cottenier, S., Denier, J., Geneste, G., Ghosez, P., Giantomassi, M., Gillet, Y., Gingras, O., Hamann, D.R., Hautier, G., He, X., Helbig, N., Holzwarth, N., Jia, Y., Jollet, F., Lafargue-Dit-Hauret, W., Lejaeghere, K., Marques, M.A., Martin, A., Martins, C., Miranda, H.P., Naccarato, F., Persson, K., Petretto, G., Planes, V., Pouillon, Y., Prokhorenko, S., Ricci, F., Rignanese, G.-M., Romero, A.H., Schmitt, M.M., Torrent, M., van Setten, M.J., Van Troeye, B., Verstraete, M.J., Zérah, G., Zwanziger, J.W., The abinitproject: impact, environment and recent developments. Comput. Phys. Commun., 248, 2020, 107042, 10.1016/j.cpc.2019.107042 https://www.sciencedirect.com/science/article/pii/S0010465519303741.
Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple. Phys. Rev. Lett. 77 (1996), 3865–3868, 10.1103/PhysRevLett.77.3865.
van Setten, M., Giantomassi, M., Bousquet, E., Verstraete, M., Hamann, D., Gonze, X., Rignanese, G.-M., The pseudodojo: training and grading a 85 element optimized norm-conserving pseudopotential table. Comput. Phys. Commun. 226 (2018), 39–54, 10.1016/j.cpc.2018.01.012 https://www.sciencedirect.com/science/article/pii/S0010465518300250.
Monkhorst, H.J., Pack, J.D., Special points for brillouin-zone integrations. Phys. Rev. B 13 (1976), 5188–5192, 10.1103/PhysRevB.13.5188.
Gonze, X., Lee, C., Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 55 (1997), 10355–10368, 10.1103/PhysRevB.55.10355.
Baroni, S., de Gironcoli, S., Dal Corso, A., Giannozzi, P., Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73 (2001), 515–562, 10.1103/RevModPhys.73.515.
Resta, R., Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev. Mod. Phys. 66 (1994), 899–915, 10.1103/RevModPhys.66.899.
B. C. H.T. Stokes, D.M. Hatch, Isodistort, isotropy software suite. URL https://stokes.byu.edu/iso.
Bieder, J., Qt Interface for Agate. Mar. 2021, 10.5281/zenodo.4606005.
Medvedeva, N.I., Turzhevsky, S.A., Gubanov, V.A., Freeman, A.J., Electronic structure of aurivillius phases: ideal Bi2NbO6, its stabilization with fluorine substitution and the role of oxygen vacancies. Phys. Rev. B 48 (1993), 16061–16067, 10.1103/PhysRevB.48.16061.
Morita, K., Park, J.-S., Kim, S., Yasuoka, K., Walsh, A., Crystal engineering of Bi2WO6 to polar aurivillius-phase oxyhalides. arXiv: J. Phys. Chem. C 123:48 (2019), 29155–29161, 10.1021/acs.jpcc.9b09806.
See Supplemental Material at [URL will be inserted by publisher] for atomic coordinates, modes contributions with qAgate softaware, unstable mode eigenvectors and Total Electronic Densities of States (DOS) for (Feq), for (Fap) and (Feq+Fap) Orderings.
Djani, H., Bousquet, E., Kellou, A., Ghosez, P., First-principles study of the ferroelectric aurivillius phase Bi2WO6. Phys. Rev. B, 86, 2012, 054107, 10.1103/PhysRevB.86.054107.
H. Stockes, D. Hatch, B. Campbell, ISOTROPY, stokes.byu.edu/isotropy.Html.
Djani, H., McCabe, E.E., Zhang, W., Halasyamani, P.S., Feteira, A., Bieder, J., Bousquet, E., Ghosez, P., Bi2W2O9: a potentially antiferroelectric aurivillius phase. Phys. Rev. B, 101, 2020, 134113, 10.1103/PhysRevB.101.134113.
Co, K., Sun, F.-C., Alpay, S.P., Nayak, S.K., Polarization rotation in Bi4Ti3O12 by isovalent doping at the fluorite sublattice. Phys. Rev. B, 99, 2019, 014101, 10.1103/PhysRevB.99.014101.
McCabe, E.E., Bousquet, E., Stockdale, C.P.J., Deacon, C.A., Tran, T.T., Halasyamani, P.S., Stennett, M.C., Hyatt, N.C., Proper ferroelectricity in the dion–jacobson material CsBi2Ti2NbO10: experiment and theory. Chem. Mater. 27:24 (2015), 8298–8309, 10.1021/acs.chemmater.5b03564.
G. Stone, C. Orphus, T. Birol, J. Ciston, C.-H. Lee, K. Wang, C. J. Fennie, D. Schlom, N. Alem, V. Gopalan, Atomic scale imaging of competing polar states in a ruddlesden–popper layered oxide, Nat. Commun. 7 (12572). doi:10.1038/ncomms12572. URL https://doi.org/10.1038/ncomms12572.
Ravez, J., Simon, A., Thirty years of research in ferroelectric oxyfluorides. arXiv: Ferroelectrics 81:1 (1988), 309–312, 10.1080/00150198808008870.
Ghosez, P., Gonze, X., Michenaud, J.-P., Coulomb interaction and ferroelectric instability of BaTiO3. Europhys. Lett. 33:9 (1996), 713–718, 10.1209/epl/i1996-00404-8.
Ghosez, P., Cockayne, E., Waghmare, U.V., Rabe, K.M., Lattice dynamics of BaTiO3, PbTiO3, PbZrO3 : a comparative first-principles study. Phys. Rev. B 60 (1999), 836–843, 10.1103/PhysRevB.60.836.
Amoroso, D., Cano, A., Ghosez, P., First-principles study of (Ba,Ca)TiO3 and Ba(Ti,Zr)O3. Phys. Rev. B, 97, 2018, 174108, 10.1103/PhysRevB.97.174108.
Resta, R., Posternak, M., Baldereschi, A., Towards a quantum theory of polarization in ferroelectrics: the case of KNbO3. Phys. Rev. Lett. 70 (1993), 1010–1013, 10.1103/PhysRevLett.70.1010.
Harada, J.K., Poeppelmeier, K.R., Rondinelli, J.M., Heteroanionic ruddlesden-popper ferroelectrics from anion order and octahedral tilts. Phys. Rev. Mater., 5, 2021, 104404, 10.1103/PhysRevMaterials.5.104404.
Auciello, O., Scott, J.F., Ramesh, R., The physics of ferroelectric memories. Phys. Today 51:7 (1998), 22–27, 10.1063/1.882324.
Spaldin, N.A., A beginner's guide to the modern theory of polarization. J. Solid State Chem. 195 (2012), 2–10, 10.1016/j.jssc.2012.05.010 polar Inorganic Materials: Design Strategies and Functional Properties https://www.sciencedirect.com/science/article/pii/S0022459612003234.
Oka, D., Hirose, Y., Matsui, F., Kamisaka, H., Oguchi, T., Maejima, N., Nishikawa, H., Muro, T., Hayashi, K., Hasegawa, T., Strain engineering for anion arrangement in perovskite oxynitrides. pMID: 28347140. arXiv ACS Nano 11:4 (2017), 3860–3866, 10.1021/acsnano.7b00144.
M. Namba, H. Takatsu, W. Yoshimune, A. Daniel, S. Itoh, T. Terashima, H. Kageyama, A partial anion disorder in SrVO2H induced by biaxial tensile strain, Inorganics 8 (4). doi:10.3390/inorganics8040026. URL https://www.mdpi.com/2304-6740/8/4/26.
Weller, M.T., Hughes, R.W., Rooke, J., Knee, C.S., Reading, J., The pyrochlore family – a potential panacea for the frustrated perovskite chemist. Dalton Trans., 2004, 3032–3041, 10.1039/B401787K.
Knee, C.S., Rainford, B.D., Weller, M.T., Crystal structure of the ferromagnetic superconductor RuSr2(Gd1.3Ce0.7)Cu2O10 by powder neutron diffraction. J. Mater. Chem. 10 (2000), 2445–2447, 10.1039/B006120O.
Knee, C.S., Weller, M.T., Temperature dependence of the crystal and magnetic structures of the antiferromagnetic oxides Pb4Fe3O8X, X=Cl and Br. J. Mater. Chem. 11 (2001), 2350–2357, 10.1039/B102092G.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.