General Earth and Planetary Sciences; General Environmental Science
Abstract :
[en] AbstractThe disintegration of the ice shelves along the Antarctic Peninsula have spurred much discussion on the various processes leading to their eventual dramatic collapse, but without a consensus on an atmospheric forcing that could connect these processes. Here, using an atmospheric river detection algorithm along with a regional climate model and satellite observations, we show that the most intense atmospheric rivers induce extremes in temperature, surface melt, sea-ice disintegration, or large swells that destabilize the ice shelves with 40% probability. This was observed during the collapses of the Larsen A and B ice shelves during the summers of 1995 and 2002 respectively. Overall, 60% of calving events from 2000–2020 were triggered by atmospheric rivers. The loss of the buttressing effect from these ice shelves leads to further continental ice loss and subsequent sea-level rise. Under future warming projections, the Larsen C ice shelf will be at-risk from the same processes.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Smith, B. et al. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science 368, 1239 (2020). DOI: 10.1126/science.aaz5845
Gilbert, E. & Kittel, C. Surface Melt and Runoff on Antarctic Ice Shelves at 1.5°C, 2°C, and 4°C of Future Warming. Geophys. Res. Lett. 48, e2020GL091733 (2021). DOI: 10.1029/2020GL091733
Edwards, T. L. et al. Projected land ice contributions to twenty-first-century sea level rise. Nature 593, 74–82 (2021). DOI: 10.1038/s41586-021-03302-y
Bozkurt, D., Bromwich, D. H., Carrasco, J. & Rondanelli, R. Temperature and precipitation projections for the Antarctic Peninsula over the next two decades: contrasting global and regional climate model simulations. Clim. Dyn. https://doi.org/10.1007/s00382-021-05667-2 (2021).
Banwell, A. F., Willis, I. C., Macdonald, G. J., Goodsell, B. & MacAyeal, D. R. Direct measurements of ice-shelf flexure caused by surface meltwater ponding and drainage. Nat. Commun. 10, 730 (2019). DOI: 10.1038/s41467-019-08522-5
Vieli, A., Payne, A. J., Shepherd, A. & Du, Z. Causes of pre-collapse changes of the Larsen B ice shelf: numerical modelling and assimilation of satellite observations. Earth Planet. Sci. Lett. 259, 297–306 (2007). DOI: 10.1016/j.epsl.2007.04.050
Scambos, T. et al. Ice shelf disintegration by plate bending and hydro-fracture: Satellite observations and model results of the 2008 Wilkins ice shelf break-ups. Earth Planet. Sci. Lett. 280, 51–60 (2009). DOI: 10.1016/j.epsl.2008.12.027
Khazendar, A., Rignot, E. & Larour, E. Larsen B Ice Shelf rheology preceding its disintegration inferred by a control method. Geophys. Res. Lett. 34, L19503 (2007). DOI: 10.1029/2007GL030980
Glasser, N. F. & Scambos, T. A. A structural glaciological analysis of the 2002 Larsen B ice-shelf collapse. J. Glaciol. 54, 3–16 (2008). DOI: 10.3189/002214308784409017
Elvidge, A. D., Renfrew, I. A., King, J. C., Orr, A. & Lachlan-Cope, T. A. Foehn warming distributions in nonlinear and linear flow regimes: a focus on the Antarctic Peninsula: Foehn Warming Distributions in Nonlinear and Linear Flow Regimes. Q.J.R. Meteorol. Soc. 142, 618–631 (2016). DOI: 10.1002/qj.2489
Turton, J. V., Kirchgaessner, A., Ross, A. N. & King, J. C. The spatial distribution and temporal variability of föhn winds over the Larsen C ice shelf. Antarctica. Q.J.R. Meteorol. Soc. 144, 1169–1178 (2018). DOI: 10.1002/qj.3284
Alley, K. E., Scambos, T. A., Miller, J. Z., Long, D. G. & MacFerrin, M. Quantifying vulnerability of Antarctic ice shelves to hydrofracture using microwave scattering properties. Remote Sens. Environ. 210, 297–306 (2018). DOI: 10.1016/j.rse.2018.03.025
Robel, A. A. & Banwell, A. F. A speed limit on ice shelf collapse through hydrofracture. Geophys. Res. Lett. 46, 12092–12100 (2019). DOI: 10.1029/2019GL084397
Massom, R. A. et al. Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell. Nature 558, 383–389 (2018). DOI: 10.1038/s41586-018-0212-1
Scambos, T. A., Hulbe, C., Fahnestock, M. & Bohlander, J. The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. J. Glaciol. 46, 516–530 (2000). DOI: 10.3189/172756500781833043
Rutz, J. J. et al. The Atmospheric River Tracking Method Intercomparison Project (ARTMIP): quantifying uncertainties in atmospheric river climatology. J. Geophys. Res.: Atmos. 124, 13777–13802 (2019). DOI: 10.1029/2019JD030936
Gorodetskaya, I. V., Silva, T., Schmithüsen, H. & Hirasawa, N. Atmospheric river signatures in radiosonde profiles and reanalyses at the Dronning Maud Land Coast, East Antarctica. Adv. Atmos. Sci. 37, 455–476 (2020). DOI: 10.1007/s00376-020-9221-8
Terpstra, A., Gorodetskaya, I. V. & Sodemann, H. Linking sub-tropical evaporation and extreme precipitation over East Antarctica: an atmospheric river case study. J. Geophys. Res.: Atmos. 126, e2020JD033617 (2021). DOI: 10.1029/2020JD033617
Gorodetskaya, I. V. et al. The role of atmospheric rivers in anomalous snow accumulation in East Antarctica. Geophys. Res. Lett. 41, 6199–6206 (2014). DOI: 10.1002/2014GL060881
Wille, J. D. et al. West Antarctic surface melt triggered by atmospheric rivers. Nat. Geosci. 12, 911–916 (2019). DOI: 10.1038/s41561-019-0460-1
Bozkurt, D., Rondanelli, R., Marín, J. C. & Garreaud, R. Foehn event triggered by an atmospheric river underlies record-setting temperature along continental Antarctica. J. Geophys. Res.: Atmos. 123, 3871–3892 (2018). DOI: 10.1002/2017JD027796
Francis, D., Mattingly, K. S., Temimi, M., Massom, R. & Heil, P. On the crucial role of atmospheric rivers in the two major Weddell Polynya events in 1973 and 2017 in Antarctica. Sci Adv. 6, eabc2695 (2020). DOI: 10.1126/sciadv.abc2695
Wille, J. D. et al. Antarctic atmospheric river climatology and precipitation impacts. J. Geophys. Res.: Atmos. 126, e2020JD033788 (2021). DOI: 10.1029/2020JD033788
Agosta, C. et al. Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes. Cryosphere 13, 281–296 (2019). DOI: 10.5194/tc-13-281-2019
Gelaro, R. et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017). DOI: 10.1175/JCLI-D-16-0758.1
Marín, J. C., Bozkurt, D. & Barrett, B. S. Atmospheric blocking trends and seasonality around the Antarctic Peninsula. J. Clim. 1–58 https://doi.org/10.1175/JCLI-D-21-0323.1 (2022).
Qiao, G., Li, Y., Guo, S. & Ye, W. Evolving instability of the scar inlet ice shelf based on sequential landsat images spanning 2005–2018. Remote Sens. 12, 36 (2019). DOI: 10.3390/rs12010036
Rott, H., Skvarca, P. & Nagler, T. Rapid collapse of northern Larsen Ice Shelf, Antarctica. Science 271, 788–792 (1996). DOI: 10.1126/science.271.5250.788
Xu, M. et al. Dominant role of vertical air flows in the unprecedented warming on the Antarctic Peninsula in February 2020. Commun. Earth. Environ. 2, 133 (2021). DOI: 10.1038/s43247-021-00203-w
Van Tricht, K. et al. Clouds enhance Greenland ice sheet meltwater runoff. Nat. Commun. 7, 10266 (2016).
Banwell, A. F. et al. The 32-year record-high surface melt in 2019/2020 on the northern George VI Ice Shelf, Antarctic Peninsula. Cryosphere 15, 909–925 (2021). DOI: 10.5194/tc-15-909-2021
Vignon, É., Roussel, M.-L., Gorodetskaya, I. V., Genthon, C. & Berne, A. Present and future of rainfall in Antarctica. Geophys. Res. Lett. 48, e2020GL092281 (2021). DOI: 10.1029/2020GL092281
Costi, J. et al. Estimating surface melt and runoff on the Antarctic Peninsula using ERA-Interim reanalysis data. Antarct. Sci. 30, 379–393 (2018). DOI: 10.1017/S0954102018000391
Hubbard, B. et al. Massive subsurface ice formed by refreezing of ice-shelf melt ponds. Nat. Commun. 7, 11897 (2016). DOI: 10.1038/ncomms11897
Doake, C. S. M., Corr, H. F. J., Rott, H., Skvarca, P. & Young, N. W. Breakup and conditions for stability of the northern Larsen Ice Shelf, Antarctica. Nature 391, 778–780 (1998). DOI: 10.1038/35832
Bevan, S., Luckman, A., Hendon, H. & Wang, G. The 2020 Larsen C Ice Shelf surface melt is a 40-year record high. Cryosphere 14, 3551–3564 (2020). DOI: 10.5194/tc-14-3551-2020
Holland, P. R. et al. Oceanic and atmospheric forcing of Larsen C Ice-Shelf thinning. Cryosphere 9, 1005–1024 (2015). DOI: 10.5194/tc-9-1005-2015
Merino, N. et al. Impact of increasing antarctic glacial freshwater release on regional sea-ice cover in the Southern Ocean. Ocean Model. 121, 76–89 (2018). DOI: 10.1016/j.ocemod.2017.11.009
Etourneau, J. et al. Ocean temperature impact on ice shelf extent in the eastern Antarctic Peninsula. Nat. Commun. 10, 304 (2019). DOI: 10.1038/s41467-018-08195-6
Francis, D., Mattingly, K. S., Lhermitte, S., Temimi, M. & Heil, P. Atmospheric extremes triggered the biggest calving event in more than 50 years at the Amery Ice shelf in September 2019. Cryosphere Discuss. 2020, 1–30 (2020).
Ralph, F. M. et al. A scale to characterize the strength and impacts of atmospheric rivers. Bull. Am. Meteorol. Soc. 100, 269–289 (2019). DOI: 10.1175/BAMS-D-18-0023.1
Pohl, B. et al. Relationship between weather regimes and atmospheric rivers in East Antarctica. J. Geophys. Res.: Atmos. 126, e2021JD035294 (2021). DOI: 10.1029/2021JD035294
Turton, J. V., Kirchgaessner, A., Ross, A. N., King, J. C. & Kuipers Munneke, P. The influence of föhn winds on annual and seasonal surface melt on the Larsen C Ice Shelf, Antarctica. Cryosphere Discuss. 2020, 1–25 (2020).
Luckman, A. et al. Surface melt and ponding on Larsen C Ice Shelf and the impact of föhn winds. Antarct. Sci. 26, 625–635 (2014). DOI: 10.1017/S0954102014000339
Elvidge, A. D., Kuipers Munneke, P., King, J. C., Renfrew, I. A. & Gilbert, E. Atmospheric drivers of melt on Larsen C ice shelf: surface energy budget regimes and the impact of Foehn. J. Geophys. Res.: Atmos. 125, e2020JD032463 (2020). DOI: 10.1029/2020JD032463
Gonzalez, S. & Fortuny, D. How robust are the temperature trends on the Antarctic Peninsula? Antarct. Sci. 30, 322–328 (2018). DOI: 10.1017/S0954102018000251
Turner, J. et al. Extreme temperatures in the Antarctic. J. Clim. 34, 2653–2668 (2021). DOI: 10.1175/JCLI-D-20-0538.1
Hutchinson, K. et al. Water mass characteristics and distribution adjacent to Larsen C Ice Shelf, Antarctica. J. Geophys. Res. Oceans 125, https://doi.org/10.1029/2019JC015855 (2020).
Hogg, A. E. & Gudmundsson, G. H. Impacts of the Larsen-C Ice Shelf calving event. Nat. Clim. Chang. 7, 540–542 (2017). DOI: 10.1038/nclimate3359
Fürst, J. J. et al. The safety band of Antarctic ice shelves. Nat. Clim. Chang. 6, 479–482 (2016). DOI: 10.1038/nclimate2912
Lai, C.-Y. et al. Vulnerability of Antarctica’s ice shelves to meltwater-driven fracture. Nature 584, 574–578 (2020). DOI: 10.1038/s41586-020-2627-8
Chyhareva, A., Krakovska, S. & Pishniak, D. Climate projections over the Antarctic Peninsula region to the end of the 21st century. Part 1: cold temperature indices. Ukrainian Antarct. J. 62–74 https://doi.org/10.33275/1727-7485.1(18).2019.131 (2019).
Siegert, M. et al. The Antarctic Peninsula under a 1.5°C global warming scenario. Front. Environ. Sci. 7, 102 (2019). DOI: 10.3389/fenvs.2019.00102
Espinoza, V., Waliser, D. E., Guan, B., Lavers, D. A. & Ralph, F. M. Global analysis of climate change projection effects on atmospheric rivers. Geophys. Res. Lett. 45, 4299–4308 (2018). DOI: 10.1029/2017GL076968
Zou, X., Bromwich, D. H., Montenegro, A., Wang, S.-H. & Bai, L. Major surface melting over the Ross Ice Shelf part I: Foehn effect. Q. J. R. Meteorol. Soc. 147, 2874–2894 (2021). DOI: 10.1002/qj.4104
Zou, X., Bromwich, D. H., Nicolas, J. P., Montenegro, A. & Wang, S. West Antarctic surface melt event of January 2016 facilitated by föhn warming. Q. J. R. Meteorol. Soc. https://doi.org/10.1002/qj.3460 (2019).
Aster, R. C. et al. Swell‐triggered seismicity at the near‐front damage zone of the ross ice shelf. Seismol. Res. Lett. https://doi.org/10.1785/0220200478 (2021).
Bassis, J. N., Fricker, H. A., Coleman, R. & Minster, J.-B. An investigation into the forces that drive ice-shelf rift propagation on the Amery Ice Shelf, East Antarctica. J. Glaciol. 54, 17–27 (2008). DOI: 10.3189/002214308784409116
van Wessem, J. M., Steger, C. R., Wever, N. & van den Broeke, M. R. Modelling perennial firn aquifers in the Antarctic Peninsula (1979–2016). Cryosphere Discuss. 2020, 1–30 (2020).
Munneke, P. K. M., Ligtenberg, S. R., van den Broeke, M. R., van Angelen, J. H. & Forster, R. R. Explaining the presence of perennial liquid water bodies in the firn of the Greenland Ice Sheet. Geophys. Res. Lett. 41, 476–483 (2014). DOI: 10.1002/2013GL058389
van den Broeke, M. Strong surface melting preceded collapse of Antarctic Peninsula ice shelf. Geophys. Res. Lett. 32, L12815 (2005).
Zhou, Y. et al. Uncertainties in atmospheric river lifecycles by detection algorithms: climatology and variability. J. Geophys. Res.: Atmos. 126, e2020JD033711 (2021).
O’Brien, T. A. et al. Detection of atmospheric rivers with inline uncertainty quantification: TECA-BARD v1.0.1. Geosci. Model Dev. 13, 6131–6148 (2020). DOI: 10.5194/gmd-13-6131-2020
Clem, K. R., Renwick, J. A., McGregor, J. & Fogt, R. L. The relative influence of ENSO and SAM on Antarctic Peninsula climate. J. Geophys. Res.: Atmos. 121, 9324–9341 (2016). DOI: 10.1002/2016JD025305
Clem, K., Bozkurt, D., Kennett, D., King, J. & Turner, J. Central tropical Pacific convection drives extreme high temperatures and surface melt on the Larsen ice shelf. Nat. Portfolio https://doi.org/10.21203/rs.3.rs-712751/v1 (2022).
Fettweis, X. et al. Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model. Cryosphere 11, 1015–1033 (2017). DOI: 10.5194/tc-11-1015-2017
Gallée, H. & Schayes, G. Development of a three-dimensional meso-γ primitive equation model: katabatic winds simulation in the area of Terra Nova Bay, Antarctica. Mon. Weather Rev. 122, 671–685 (1994). DOI: 10.1175/1520-0493(1994)122<0671:DOATDM>2.0.CO;2
Ridder, K. D. & Schayes, G. The IAGL land surface model. J. Appl. Meteorol. 36, 167–182 (1997). DOI: 10.1175/1520-0450(1997)036<0167:TILSM>2.0.CO;2
Brun, E., Martin, Ε, Simon, V., Gendre, C. & Coleou, C. An energy and mass model of snow cover suitable for operational avalanche forecasting. J. Glaciol. 35, 333–342 (1989). DOI: 10.1017/S0022143000009254
Kittel, C. et al. Sensitivity of the current Antarctic surface mass balance to sea surface conditions using MAR. Cryosphere 12, 3827–3839 (2018). DOI: 10.5194/tc-12-3827-2018
Donat-Magnin, M. et al. Interannual variability of summer surface mass balance and surface melting in the Amundsen sector, West Antarctica. Cryosphere 14, 229–249 (2020). DOI: 10.5194/tc-14-229-2020
Mottram, R. et al. What is the surface mass balance of Antarctica? an intercomparison of regional climate model estimates. Cryosphere Discuss. 2020, 1–42 (2020).
Datta, R. T. et al. Melting over the northeast Antarctic Peninsula (1999–2009): evaluation of a high-resolution regional climate model. Cryosphere 12, 2901–2922 (2018). DOI: 10.5194/tc-12-2901-2018
Fettweis, X. et al. GrSMBMIP: Intercomparison of the modelled 1980–2012 surface mass balance over the Greenland Ice sheet. Cryosph. Discuss. 2020, 1–35 (2020).
Datta, R. T. et al. The effect of Foehn-induced surface melt on firn evolution over the Northeast Antarctic Peninsula. Geophys. Res. Lett. 46, 3822–3831 (2019). DOI: 10.1029/2018GL080845
Jakobs, C. L. et al. A benchmark dataset of in situ Antarctic surface melt rates and energy balance. J. Glaciol. 66, 291–302 (2020). DOI: 10.1017/jog.2020.6
Hirahara, S., Balmaseda, M. A., Boisseson, E. de & Hersbach, H. Sea Surface Temperature and Sea Ice Concentration for ERA5. https://www.ecmwf.int/node/16555 (2016).
Hersbach, H. et al. The ERA5 global reanalysis. Q.J.R. Meteorol. Soc. 146, 1999–2049 (2020). DOI: 10.1002/qj.3803
Pisso, I. et al. The Lagrangian particle dispersion model FLEXPART version 10.4. Geosci. Model Dev. 12, 4955–4997 (2019). DOI: 10.5194/gmd-12-4955-2019
Tipka, A., Haimberger, L. & Seibert, P. Flex_extract v7.1.2–a software package to retrieve and prepare ECMWF data for use in FLEXPART. Geosci. Model Dev. 13, 5277–5310 (2020). DOI: 10.5194/gmd-13-5277-2020
Scambos, T. Images of Antarctic ice shelves. https://doi.org/10.7265/N5NC5Z4N (2001).
Stuart, K. M. & Long, D. G. Iceberg size and orientation estimation using SeaWinds. Cold Regions Sci. Technol. 69, 39–51 (2011). DOI: 10.1016/j.coldregions.2011.07.006
Picard, G. & Fily, M. Surface melting observations in Antarctica by microwave radiometers: correcting 26-year time series from changes in acquisition hours. Remote Sens. Environ. 104, 325–336 (2006). DOI: 10.1016/j.rse.2006.05.010
Moussavi, M. et al. Antarctic supraglacial lake detection using landsat 8 and sentinel-2 imagery: towards continental generation of Lake volumes. Remote Sens. 12, 134 (2020).
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.