Hambuckers et al 2022 - Towards a More Realistic Simulation of Plant Species with a Dynamic Vegetation Model Using Field-Measured Traits - The Atlas Cedar a Case Study .zip
dynamic vegetation modelling; specific leaf area; sapwood nitrogen; leaf nitrogen; acclimation; net primary productivity; Cedrus atlantica (Endl.) Manetti ex Carrière
Abstract :
[en] Improving the model-based predictions of plant species under a projected climate is essential to better conserve our biodiversity. However, the mechanistic link between climatic variation and plant response at the species level remains relatively poorly understood and not accurately de-veloped in Dynamic Vegetation Models (DVMs). We investigated the acclimation to climate of Cedrus atlantica (Atlas cedar), an endemic endangered species from northwestern African moun-tains, in order to improve the ability of a DVM to simulate tree growth under climatic gradients. Our results showed that the specific leaf area, leaf C:N and sapwood C:N vary across the range of the species in relation to climate. Using the model parameterized with the three traits varying with climate could improve the simulated local net primary productivity (NPP) when compared to the model parameterized with fixed traits. Quantifying the influence of climate on traits and including these variations in DVMs could help to better anticipate the consequences of climate change on species dynamics and distributions. Additionally, the simulation with computed traits showed dramatic drops in NPP over the course of the 21st century. This finding is in line with other studies suggesting the decline in the species in the Rif Mountains, owing to increasing water stress.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Hambuckers, Alain ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution ; Université de Liège - ULiège > Sphères
Trolliet, Franck ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Modélisation du climat et des cycles biogéochimiques
Dury, Marie ; Université de Liège - ULiège > Sphères
Henrot, Alexandra-Jane ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Modélisation du climat et des cycles biogéochimiques
Porteman, Kristof
El Hasnaoui, Yassine
Van den Bulcke, Jan
De Mil, Tom ; Université de Liège - ULiège > Département GxABT > Gestion des ressources forestières et des milieux naturels
Walther, G.R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.C.; Fromentin, J.M.; Hoegh‐Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395. https://doi.org/1038/416389a.
Thomas, C.D.; Cameron, A.; Green, R.E.; Bakkenes, M.; Beaumont, L.J.; Collingham, Y.C.; Erasmus, B.F.N.; Ferreira De Siqueira, M.; Grainger, A.; Hannah, L.; et al. Extinction risk from climate change. Nature 2004, 427, 145–148. https://doi.org/1038/nature02121.
Steinbauer, M.J.; Grytnes, J.‐A.; Jurasinski, G.; Kulonen, A.; Lenoir, J.; Pauli, H.; Rixen, C.; Winkler, M.; Bardy‐Durchhalter, M.; Barni, E.; et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 2018, 556, 231– 234. https://doi.org/1038/s41586‐018‐0005‐6.
Pecl, G.T.; Araújo, M.B.; Bell, J.D.; Blanchard, J.; Bonebrake, T.C.; Chen, I.C.; Clark, T.D.; Colwell, R.K.; Danielsen, F.; Evengård, B.; et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well‐being. Science 2017, 355,1–9. https://doi.org/1126/science.aai9214.
Meng, H.; Wei, X.; Franklin, S.B.; Wu, H.; Jiang, M. Geographical variation and the role of climate in leaf traits of a relict tree species across its distribution in China. Plant Biol. 2017, 19, 552–561. https://doi.org/1111/plb.12564.
Dai, Z.; Johnson, K.D.; Birdsey, R.A.; Hernandez‐Stefanoni, J.L.; Dupuy, J.M. Assessing the effect of climate change on carbon sequestration in a Mexican dry forest in the Yucatan Peninsula. Ecol. Complex. 2015, 24, 46–56. https://doi.org/1016/j.ecocom.2015.09.004.
Henrot, A.J.; Utescher, T.; Erdei, B.; Dury, M.; Hamon, N.; Ramstein, G.; Krapp, M.; Herold, N.; Goldner, A.; Favre, E.; et al. Middle Miocene climate and vegetation models and their validation with proxy data. Palaeogeogr. Palaeocl. 2017, 467, 95–119. https://doi.org/1016/j.palaeo.2016.05.026.
Wu, Z.; Ahlström, A.; Smith, B.; Ardö; J; Eklundh, L.; Fensholt, R.; Lehsten, V. Climate data induced uncertainty in model‐based estimations of terrestrial primary productivity. Environ. Res. Lett. 2017, 12, 064013. https://doi.org/1088/1748‐9326/aa6fd8.
Dury, M.; Mertens, L.; Fayolle, A.; Verbeeck, H.; Hambuckers, A.; François, L. Refining species traits in a dynamic vegetation model to project the impacts of climate change on tropical trees in Central Africa. Forests 2018, 9, 722. https://doi.org/3390/f9110722.
Maréchaux, I.; Langerwisch, F.; Huth, A.; Bugmann, H.; Morin, X.; Reyer, C.P.O.; Seidl, R.; Collalti, A.; Dantas de Paula, M.; Fischer, R.; et al. Tackling unresolved questions in forest ecology: The past and future role of simulation models. Ecol. Evol. 2021, 11, 3746–3770. https://doi.org/1002/ece3.7391.
Dury, M.; Hambuckers, A.; Warnant, P.; Henrot, A.; Favre, E.; Ouberdous, M.; François, L. Responses of European forest ecosystems to 21 st century climate: Assessing changes in interannual variability and fire intensity. Iforest 2011, 4, 82–99. https://doi.org/3832/ifor0572‐004.
Raghunathan, N.; François, L.; Dury, M.; Hambuckers, A. Contrasting climate risks predicted by dynamic vegetation and ecological niche‐based models applied to tree species in the Brazilian Atlantic Forest. Reg. Environ. Change 2019, 19, 219–232. https://doi.org/1007/s10113‐018‐1405‐8.
Carmona, P.; Rota, C.; Azcárate, F.M.; Peco, B. More for less: Sampling strategies of plant functional traits across local environmental gradients. Funct. Ecol. 2015, 29, 579–588. https://doi.org/https://doi.org/1111/1365‐2435.12366.
Hartig, F.; Dyke, J.; Hickler, T.; Higgins, S.I.; O’Hara, R.B.; Scheiter, S.; Huth, A. Connecting dynamic vegetation models to data—An inverse perspective. J. Biogeogr. 2012, 39, 2240–2252. https://doi.org/1111/j.1365‐2699.2012.02745.x.
Minet, J.; Laloy, E.; Tychon, B.; François, L. Bayesian inversions of a dynamic vegetation model at four European grassland sites. Biogeosciences 2015, 12, 2809–2829. https://doi.org/5194/bg‐12‐2809‐2015.
Shipley, B.; De Bello, F.; Cornelissen, J.H.C.; Laliberté; E; Laughlin, D.C.; Reich, P.B. Reinforcing loose foundation stones in trait-based plant ecology. Oecologia 2016, 180, 923–931. https://doi.org/1007/s00442‐016‐3549‐x.
Heilmeier, H. Functional traits explaining plant responses to past and future climate changes. Flora 2019, 254, 1–11. https://doi.org/1016/j.flora.2019.04.004.
Dalle Fratte, M.; Brusa, G.; Pierce, S.; Zanzottera, M.; Cerabolini, B.E.L. Plant trait variation along environmental indicators to infer global change impacts. Flora 2019, 254, 113–121. https://doi.org/1016/j.flora.2018.12.004.
Moran, E.V.; Hartig, F.; Bell, D.M. Intraspecific trait variation across scales: Implications for understanding global change responses. Glob. Change Biol. 2016, 22, 137–150. https://doi.org/1111/gcb.13000.
Berzaghi, F.; Wright, I.J.; Kramer, K.; Oddou‐Muratorio, S.; Bohn, F.J.; Reyer, C.P.O.; Sabaté, S.; Sanders, T.G.M.; Hartig, F. Towards a new generation of trait‐flexible vegetation models. Trends. Ecol. Evol. 2020, 35, 191–205. https://doi.org/1016/j.tree.2019.11.006.
Bloomfield, K.J.; Cernusak, L.A.; Eamus, D.; Ellsworth, D.S.; Colin Prentice, I.; Wright, I.J.; Boer, M.M.; Bradford, M.G.; Cale, P.; Cleverly, J.; et al. A continental‐scale assessment of variability in leaf traits: Within species, across sites and between seasons. Funct. Ecol. 2018, 32, 1492–1506. https://doi.org/1111/1365‐2435.13097.
Gillison, A.N. Plant functional indicators of vegetation response to climate change, past present and future: I. Trends, emerging hypotheses and plant functional modality. Flora 2019, 254, 12–30. https://doi.org/1016/j.flora.2019.03.013.
Touchan, R.; Anchukaitis, K.J.; Meko, D.M.; Kerchouche, D.; Slimani, S.; Ilmen, R.; Hasnaoui, F.; Guibal, F.; Julio Camarero, J.; Sánchez‐Salguero, R.; et al. Climate controls on tree growth in the Western Mediterranean. Holocene 2017, 27, 1429–1442. https://doi.org/1177/0959683617693901.
Kherchouche, D.; Kalla, M.; Gutierrez, E.; Briki, A.; Hamchi, A. Drought and dieback of atlas cedar (Cedrus atlantica Manetti) in the Belezma mountains (Algeria). Sécheresse 2013, 24, 129–137. https://doi.org/1684/sec.2013.0384.
Slimani, S.; Derridj, A.; Gutierrez, E. Ecological response of Cedrus atlantica to climate variability in the massif of Guetiane (Algeria). For. Syst. 2014, 23, 448–460. https://doi.org/5424/fs/2014233‐05175.
Myers, N.; Mittermeler, R.A.; Mittermeler, C.G.; Da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. https://doi.org/1038/35002501.
Linares, J.C.; Taïqui, L.; Camarero, J.J. Increasing drought sensitivity and decline of atlas cedar (Cedrus atlantica) in the Moroccan Middle Atlas forests. Forests 2011, 2, 777–796. https://doi.org/3390/f2030777.
Linares, J.C.; Taïqui, L.; Sangüesa‐Barreda, G.; Seco, J.I.; Camarero, J.J. Age‐related drought sensitivity of Atlas cedar (Cedrus atlantica) in the Moroccan Middle Atlas forests. Dendrochronologia 2013, 31, 88–96. https://doi.org/1016/j.dendro.2012.08.003.
Cheddadi, R.; Henrot, A.; Francois, L.; Boyer, F.; Bush, M.; Carre, M.; Coissac, E.; De Oliveira, P.; Ficetola, F.; Hambuckers, A.; et al. The role of modern microrefugia in preserving mountain tree species: Cedrus atlantica in Morocco. Front. Ecol. Environ. 2017, 5, 114. https://doi.org/3389/fevo.2017.00114.
Thomas, P. Cedrus atlantica. The IUCN Red List of Threatened Species 2013: e.T42303A2970716. Available online: https://dx.doi.org/10.2305/IUCN.UK.2013‐1.RLTS.T42303A2970716.en (accessed on 10‐12‐2021).
Coudel, M.; Aubert, P.‐M.; Aderghal, M.; Hély, C. Pastoral and woodcutting activities drive Cedrus atlantica Mediterranean forest structure in the Moroccan Middle Atlas. Ecol. Appl. 2016, 26, 574–586. https://doi.org/1890/14‐2393.1.
Cornelissen, J.H.C.; Lavorel, S.; Garnier, E.; Diaz, S.; Buchmann, N.; Gurvich, D.E.; Reich, P.B.; ter Steege, H.; Morgan, H.D.; Van der Heijden, M.G.A.; et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Austral. J. Bot. 2003, 51, 335–380. https://doi.org/1071/BT02124.
Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. https://doi.org/1038/nmeth.2089.
Durkaya, B.; Durkaya, A.; Makineci, E.; Ülküdür, M. Estimation of above‐ground biomass and sequestered carbon of Taurus Cedar (Cedrus libani L.) in Antalya, Turkey. Iforest 2013, 6, 278–284. https://doi.org/3832/ifor0899‐006.
Martin, A.R.; Gezahegn, S.; Thomas, S.C. Variation in carbon and nitrogen concentration among major woody tissue types in temperate trees. Can. J. For. Res. 2015, 45, 744–757. https://doi.org/1139/cjfr‐2015‐0024.
Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. https://doi.org/1002/joc.5086.
Hijmans, R.J.; van Etten, J. Raster: Geographic data Analysis and modeling (R Package). Available online: https://CRAN.R-project.org/package=raster (accessed on 01‐04‐2020).
Calcagno, V.; de Mazancourt, C. glmulti: An R package for easy automated model selection with (generalized) linear models. J. Stat. Softw. 2010, 34, 1–29. https://doi.org/18637/jss.v034.i12.
Deleuze, C.; Morneau, F.; Renaud, J.‐P.; Vivien, Y.; Rivoire, M.; Santenoise, P.; Longuetaud, F.; Mothe, F.; Hervé, J.C.; Vallet, P. Estimer le volume total d’un arbre, quelles que soient l’essence, la taille, la sylviculture, la station. Rendez‐vous Techniques 2014, 44, 22–32. Available online: https://www.onf.fr/outils/ressources/d805d212‐4584‐4a8d‐ae3a‐c3a896a386a4/++versions++/1/++pa-ras++/2/++ass++/1/++i18n++data:fr?_=1543929504.543255&download=1 (accessed on 22‐02‐2019).
Van den Bulcke, J.; Wernersson, E.L.G.; Dierick, M.; Van Loo, D.; Masschaele, B.; Brabant, L.; Boone, M.N.; Van Hoorebeke, L.; Haneca, K.; Brun, A.; et al. 3D tree‐ring analysis using helical X‐ray tomography. Dendrochronologia 2014, 32, 39–46. https://doi.org/1016/j.dendro.2013.07.001.
Dierick, M.; Van Loo, D.; Masschaele, B.; Van Den Bulcke, J.; Van Acker, J.; Cnudde, V.; Van Hoorebeke, L. Recent micro‐CT scanner developments at UGCT. Nucl. Instrum. Methods Phys. Res. B 2014, 324, 35–40. https://doi.org/1016/j.nimb.2013.https://doi.org/051.
De Mil, T.; Vannoppen, A.; Beeckman, H.; Van Acker, J.; Van den Bulcke, J. A field‐to‐desktop toolchain for X‐ray CT densitometry enables tree ring analysis. Ann. Bot. 2016, 117, 1187–1196. https://doi.org/1093/aob/mcw063.
Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed‐Effects Models Using lme4. J. Stat. Softw. 2015, 67, 48. https://doi.org/18637/jss.v067.i01.
Schleppi, P.; Conedera, M.; Sedivy, I.; Thimonier, A. Correcting non‐linearity and slope effects in the estimation of the leaf area index of forests from hemispherical photographs. Agric. Forest Meteorol. 2007, 144, 236–242. https://doi.org/1016/j.agrformet.2007.02.004.
Thimonier, A.; Sedivy, I.; Schleppi, P. Estimating leaf area index in different types of mature forest stands in Switzerland: A comparison of methods. Eur. J. For. Res. 2010, 129, 543–562. https://doi.org/1007/s10342‐009‐0353‐8.
Bequet, R.; Kint, V.; Campioli, M.; Vansteenkiste, D.; Muys, B.; Ceulemans, R. Influence of stand, site, and meteorological variables on the maximum leaf area index of beech, oak and Scots pine. Eur. J. For. Res. 2012, 131, 283–295. https://doi.org/1007/s10342‐011‐0500‐x.
Warnant, P.; François, L.; Strivay, D.; Gérard, J.‐C. CARAIB: A global model of terrestrial biological productivity. Global Biogeochem. Cycles 1994, 8, 255–270. https://doi.org/1029/94GB00850.
Meinshausen, M.; Smith, S.J.; Calvin, K.; Daniel, J.S.; Kainuma, M.L.T.; Lamarque, J.; Matsumoto, K.; Montzka, S.A.; Raper, S.C.B.; Riahi, K.; et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 2011, 109, 213–241. https://doi.org/1007/s10584‐011‐0156‐z.
Dlugokencky, E.J.; Lang, P.M.; Masarie, K.A.; Crotwell, A.M.; Crotwell, M.J. Atmospheric Carbon Dioxide Dry Air Mole Fractions from the NOAA. In ESRL Carbon Cycle Cooperative Global Air Sampling Network. Available online: ftp://aftp.cmdl.noaa.gov/data/trace:gases/co2/flask/surface/ (accessed on 01‐04‐2020).
Popova, S.; Utescher, T.; Gromyko, D.V.; Mosbrugger, V.; Herzog, E.; François, L. Vegetation change in Siberia and the northeast of Russia during the cenozoic cooling: A study based on diversity of plant functional types. Palaios 2013, 28, 418–432. https://doi.org/2110/palo.2012.p12‐096r.
Poorter, H.; Niinemets, U.; Poorter, L.; Wright, I.J.; Villar, R. Causes and consequences of variation in leaf mass per area (LMA): A meta‐analysis. New. Phytol. 2009, 182, 565–588. https://doi.org/1111/j.1469‐8137.2009.02830.x.
Perry, E.; Hickman, G.W. A survey to determine the leaf nitrogen concentrations of 25 landscape tree species. J. Arboric. 2001, 27, 152–159.
Meerts, P. Mineral nutrient concentrations in sapwood and heartwood: A literature review. Ann. For. Sci. 2002, 59, 713–722. https://doi.org/1051/forest:2002059.
Reich, P.B.; Tjoelker, M.G.; Pregitzer, K.S.; Wright, I.J.; Oleksyn, J.; Machado, J.L. Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecol. Lett. 2008, 11, 793–801. https://doi.org/1111/j.1461‐0248.2008.01185.x.
Poorter, L.; Castilho, C.V.; Schietti, J.; Oliveira, R.S.; Costa, F.R.C. Can traits predict individual growth performance? A test in a hyperdiverse tropical forest. New. Phytol. 2018, 219, 109–121. https://doi.org/1111/nph.15206.
Verbeeck, H.; Betehndoh, E.; Maes, W.H.; Hubau, W.; Kearsley, E.; Buggenhout, L.; Hufkens, K.; Huygens, D.; Van Acker, J.; Beeckman, H.; et al. Functional leaf trait diversity of 10 tree species in congolese secondary tropical forest. J. Trop. For. Sci. 2014, 26, 409–419.
Dong, N.; Colin Prentice, I.; Evans, B.J.; Caddy‐Retalic, S.; Lowe, A.J.; Wright, I.J. Leaf nitrogen from first principles: Field evidence for adaptive variation with climate. Biogeosciences 2017, 14, 481–495. https://doi.org/5194/bg‐14‐481‐2017.
Luo, T.; Luo, J.; Pan, Y. Leaf traits and associated ecosystem characteristics across subtropical and timberline forests in the Gongga Mountains, Eastern Tibetan Plateau. Oecologia 2005, 142, 261–273. https://doi.org/1007/s00442‐004‐1729‐6.
Guedira, A.; Satrani, B.; Douira, A. Effet de la densité de Cytisus grandiflorus (Brot.) DC. sur la fertilité du sol en azote et son influence sur la croissance dʹune plantation de cèdre (Cedrus atlantica Manetti). Acta Bot. Gall. 2008, 155, 375–387. https://doi.org/1080/12538078.2008.10516118.
Takos, I.; Merou, T. Effect of storage conditions and seed treatment on germination of Cedrus deodara Loud. and C. libani A. Rich. Silvae Genet. 2001, 50, 205–208. https://doi.org/15258/sst.2015.43.3.05.
Bouriaud, O.; Bréda, N.; Dupouey, J.L.; Granier, A. Is ring width a reliable proxy for stem‐biomass increment? A case study in European beech. Can. J. For. Res. 2005, 35, 2920–2933. https://doi.org/1139/x05‐202.
Dye, A.; Plotkin, A.B.; Bishop, D.; Pederson, N.; Poulter, B.; Hessl, A. Comparing tree‐ring and permanent plot estimates of aboveground net primary production in three eastern U.S. forests. Ecosphere 2016, 7, e01454.
Bentouati, A.; Oujdehih, B. Première étude de la croissance et de la productivité du Cèdre de l’Atlas (Cedrus atlantica Manetti) dans le massif de Bélezma (Aurés—Algérie). For. Méditerr. 1999, 20, 115–119. Available online: http://www.foret‐mediterraneenne.org/upload/biblio/FORET_MED_1999_2_115‐119.pdf (accessed on 23‐09‐2016).
Millard, P.; Grelet, G.A. Nitrogen storage and remobilization by trees: Ecophysiological relevance in a changing world. Tree Physiol. 2010, 30, 1083–1095. https://doi.org/1093/treephys/tpq042.
Meziane, D.; Shipley, B. Direct and indirect relationships between specific leaf area, leaf nitrogen and leaf gas exchange. Effects of irradiance and nutrient supply. Ann. Bot. 2001, 88, 915–927. https://doi.org/1006/anbo.2001.1536.
Reich, P.B.; Oleksyn, J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl. Acad. Sci. USA 2004, 101, 11001–11006. https://doi.org/1073/pnas.0403588101.
Chen, Y.; Han, W.; Tang, L.; Tang, Z.; Fang, J. Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form. Ecography 2013, 36, 178–184. https://doi.org/1111/j.1600‐0587.2011.06833.x.
Heineman, K.D.; Turner, B.L.; Dalling, J.W. Variation in wood nutrients along a tropical soil fertility gradient. New. Phytol. 2016, 211, 440–454. https://doi.org/1111/nph.13904.
Cui, Z.Y.; Yang, Z.J.; Xu, D.P.; Xi, R.C.; Zhang, N.N.; Liu, X.J.; Hong, Z. Stem respiration and chemical composition in Dalbergia odorifera plantations differing in soil moisture content. Aus. J. For. Sci. 2017, 134, 347–365. 01.12.2017—00:00.
Kotowska, M.M.; Wright, I.J.; Westoby, M. Parenchyma abundance in wood of evergreen trees varies independently of nutrients. Front. Plant Sci. 2020, 11, 86. https://doi.org/3389/fpls.2020.00086.
Alcubilla, M.; Aufsess, H.V.; Heibl, R.; Rehfuess, K.E. Stickstoffdüngungsversuche in einer Fichtenwuchsstockung (Picea abies Karst.) auf devastierter Kalkmergel‐Rendzina: III. Einflüsse von Ernährungszustand und Inokulation auf die Inhaltsstoffe von Bast und Holz. Forstwiss. Centralbl. 1988, 107, 205–218. https://doi.org/1007/BF02742190.
Koch, G.W.; Fredeen, A.L. Transport challenge in tall trees. In Vascular Transport in Plants; Holbrook, N.M., Zwieniecki, M.A., Eds.; Academic Press: Cambridge, MA, USA, 2005. https://doi.org/1016/B978‐0‐12‐088457‐5.X5000‐X.
Morais, M.C.; Pereira, H. Heartwood and sapwood variation in Eucalyptus globulus Labill. trees at the end of rotation for pulpwood production. Ann. For. Sci. 2007, 64, 665–671. https://doi.org/1051/forest:2007045.
Steane, D.A.; McLean, E.H.; Potts, B.M.; Prober, S.M.; Stock, W.D.; Stylianou, V.M.; Vaillancourt, R.E.; Byrne, M. Evidence for adaptation and acclimation in a widespread eucalypt of semi‐arid Australia. Biol. J. Linn. Soc. 2017, 121, 484–500. https://doi.org/1093/biolinnean/blw051.
Dijkstra, P. Cause and effect of differences in specific leaf area. In Causes and Consequences of Variation in Growth Rate and Productivity of Higher Plants; Lambers, H., Cambridge, M.L., Konings, H., Eds.; SPB Academic Publishing: The Hague, The Netherlands, 1989; pp. 125–140.
Reich, P.B.; Ellsworth, D.S.; Walters, M.B. Leaf structure (specific leaf area) modulates photosynthesis‐nitrogen relations: Evidence from within and across species and functional groups. Funct. Ecol. 1998, 12, 948–958. https://doi.org/1046/j.1365‐ 2435.1998.00274.x.
Pruyn, M.L.; Gartner, B.L.; Harmon, M.E. Storage versus substrate limitation to bole respiratory potential in two coniferous tree species of contrasting sapwood width. J. Exp. Bot. 2005, 56, 2637–2649. https://doi.org/1093/jxb/eri257.
Maier, C.A.; Zarnoch, S.J.; Dougherty, P.M. Effects of temperature and tissue nitrogen on dormant season stem and branch maintenance respiration in a young loblolly pine (Pinus taeda) plantation. Tree Physiol. 1998, 18, 11–20. https://doi.org/1093/treephys/18.1.11.
Guimarães, Z.T.M.; dos Santos, V.A.H.F.; Nogueira, W.L.P.; Martins, N.O.D.A.; Ferreira, M.J. Leaf traits explaining the growth of tree species planted in a Central Amazonian disturbed area. For. Ecol. Manag. 2018, 430, 618–628. https://doi.org/1016/j.foreco.2018.08.048.
Farquhar, G.D.; von Caemmerer, S.; Berry, J.A. A biogeochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 1980, 149, 78–90.
Pirttioja, N.; Carter, T.R.; Fronzek, S.; Bindi, M.; Hoffmann, H.; Palosuo, T.; Ruiz‐Ramos, M.; Tao, F.; Trnka, M.; Acutis, M.; et al. Temperature and precipitation effects on wheat yield across a European transect: A crop model ensemble analysis using impact response surfaces. Clim. Res. 2015, 84, 87–105. https://doi.org/3354/cr01322.
Chen, M.; Rafique, R.; Asrar, G.R.; Bond‐Lamberty, B.; Ciais, P.; Zhao, F.; Reyer, C.P.O.; Ostberg, S.; Chang, J.; Ito, A.; et al. Regional contribution to variability and trends of global gross primary productivity. Environ. Res. Lett. 2017, 12, 105005. https://doi.org/1088/1748‐9326/aa8978.
Fyllas, N.M.; Bentley, L.P.; Shenkin, A.; Asner, G.P.; Atkin, O.K.; Díaz, S.; Enquist, B.J.; Farfan‐Rios, W.; Gloor, E.; Guerrieri, R.; et al. Solar radiation and functional traits explain the decline of forest primary productivity along a tropical elevation gradient. Ecol. Lett. 2017, 20, 730–740. https://doi.org/1111/ele.12771.
Fyllas, N.M.; Christopoulou, A.; Galanidis, A.; Michelaki, C.Z.; Giannakopoulos, C.; Dimitrakopoulos, P.G.; Arianoutsou, M.; Gloor, M. Predicting species dominance shifts across elevation gradients in mountain forests in Greece under a warmer and drier climate. Reg. Environ. Change 2017, 17, 1165–1177. https://doi.org/1007/s10113‐016‐1093‐1.
Schwinning, S.; Ehleringer, J.R. Water use trade‐offs and optimal adaptations to pulse‐driven arid ecosystems. J. Ecol. 2001, 89, 464–480. https://doi.org/1046/j.1365‐2745.2001.00576.x.
Li, C.; Wang, K. Differences in drought responses of three contrasting Eucalyptus microtheca F. Muell. populations. For. Ecol. Manag. 2003, 179, 377–385. https://doi.org/1016/S0378‐1127(02)00552‐2.
Zhou, S.X.; Medlyn, B.E.; Prentice, I.C. Long‐term water stress leads to acclimation of drought sensitivity of photosynthetic capacity in xeric but not riparian Eucalyptus species. Ann. Bot. 2016, 117, 133–144. https://doi.org/1093/aob/mcv161.
Latimer, J.G.; Severson, R.F. Effect of mechanical and moisture‐stress conditioning on growth and cuticle composition of broccoli transplants. J. Am. Soc. Hort. Sci. 1997, 122, 788–791. https://doi.org/21273/JASHS.122.6.788.
Grill, D.; Tausz, M.; Pöllinger, U.; Jiménez, M.S.; Morales, D. Effects of drought on needle anatomy of Pinus canariensis. Flora 2004, 199, 85–89. https://doi.org/1078/0367‐2530‐00137.
Bacelar, E.A.; Santos, D.L.; Moutinho‐Pereira, J.M.; Gonçalves, B.C.; Ferreira, H.F.; Correia, C.M. Immediate responses and adaptative strategies of three olive cultivars under contrasting water availability regimes: Changes on structure and chemical composition of foliage and oxidative damage. Plant Sci. 2006, 170, 596–605. https://doi.org/1016/j.plantsci.2005.https://doi.org/014.
Pospíšilov́, J; Synková, H; Haisel, D.; Semorádová; Š Acclimation of plantlets to ex vitro conditions: Effects of air humidity, irradiance, CO2 concentration and abscisic acid (a Review). Acta Hortic. 2007, 748, 29–38. https://doi.org/17660/Acta‐ Hortic.2007.748.2.
Navarro, M.; Ayax, C.; Martinez, Y.; Laur, J.; El Kayal, W.; Marque, C.; Teulières, C. Two EguCBF1 genes overexpressed in Eucalyptus display a different impact on stress tolerance and plant development. Plant. Biotechnol. J. 2011, 9, 50–63. https://doi.org/1111/j.1467‐7652.20https://doi.org/00530.x.
Tapia, G.; Acuña, H.; Inostroza, L. Plant drought tolerance: Some genetics and agronomics relevant aspects for breeding in forage species. In Droughts: New Research; Neves, D.N., Sanz, J.D., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2013; pp. 157–187.
Tapia, G.; Morales‐Quintana, L.; Parra, C.; Berbel, A.; Alcorta, M. Study of nsLTPs in Lotus japonicus genome reveal a specific epidermal cell member (LjLTP10) regulated by drought stress in aerial organs with a putative role in cutin formation. Plant Mol. Biol. 2013, 82, 485–501. https://doi.org/1007/s11103‐013‐0080‐x.