Validation of Dairy Cow Bodyweight Prediction Using Traits Easily Recorded by Dairy Herd Improvement Organizations and Its Potential Improvement Using Feature Selection Algorithms.
Tedde, Anthony; Grelet, Clément; Ho, Phuong Net al.
dairy cow bodyweight; dairy cows; dimensionality reduction; feature selection; machine learning; mid infrared spectra; partial least square; Animal Science and Zoology; Veterinary (all); General Veterinary
Abstract :
[en] Knowing the body weight (BW) of a cow at a specific moment or measuring its changes through time is of interest for management purposes. The current work aimed to validate the feasibility of predicting BW using the day in milk, parity, milk yield, and milk mid-infrared (MIR) spectrum from a multiple-country dataset and reduce the number of predictors to limit the risk of over-fitting and potentially improve its accuracy. The BW modeling procedure involved feature selections and herd-independent validation in identifying the most interesting subsets of predictors and then external validation of the models. From 1849 records collected in 9 herds from 360 Holstein cows, the best performing models achieved a root mean square error (RMSE) for the herd-independent validation between 52 ± 2.34 kg to 56 ± 3.16 kg, including from 5 to 62 predictors. Among these models, three performed remarkably well in external validation using an independent dataset (N = 4067), resulting in RMSE ranging from 52 to 56 kg. The results suggest that multiple optimal BW predictive models coexist due to the high correlations between adjacent spectral points.
Disciplines :
Agriculture & agronomy
Author, co-author :
Tedde, Anthony ; Université de Liège - ULiège > TERRA Research Centre ; National Funds for Scientific Research, 1000 Brussels, Belgium
Grelet, Clément ; Walloon Agricultural Research Center (CRA-W), 5030 Gembloux, Belgium
Ho, Phuong N; Agriculture Victoria Research, Centre for AgriBioscience, AgriBio, Bundoora, VIC 3083, Australia
Pryce, Jennie E; Agriculture Victoria Research, Centre for AgriBioscience, AgriBio, Bundoora, VIC 3083, Australia ; School of Applied Systems Biology, La Trobe University, 5 Ring Road, Bundoora, VIC 3083, Australia
Hailemariam, Dagnachew; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
Wang, Zhiquan; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
Plastow, Graham; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
Gengler, Nicolas ; Université de Liège - ULiège > Département GxABT > Ingénierie des productions animales et nutrition
Brostaux, Yves ; Université de Liège - ULiège > Département GxABT > Modélisation et développement
Froidmont, Eric ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique et électrochimie
Crowe, Mark A; UCD School of Veterinary Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
Dufrasne, Isabelle ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH) > FARAH: Productions animales durables
Soyeurt, Hélène ; Université de Liège - ULiège > Département GxABT > Modélisation et développement
Validation of Dairy Cow Bodyweight Prediction Using Traits Easily Recorded by Dairy Herd Improvement Organizations and Its Potential Improvement Using Feature Selection Algorithms.
Acknowledgments: This work is Supported by the Luxembourg National Research Fund (INTER/FNRS/18/12987586/SimBa) and by the Fonds de la Recherche Scientifique-FNRS under Grant n◦ T.0221.19. The Genotype Plus Environment (GplusE) Project has received funding from the European Union’s Seventh Framework Programme for research, technological development, and demonstration under grant agreement no. 613689. List of authors in the GplusE consortium: Mark Crowe, Alan Fahey, Fiona Carter, Elizabeth Matthews, An-dreia Santoro, Colin Byrne, Pauline Rudd, Roisin O’Flaherty, Sinead Hallinan, Claire Wathes, Mazdak Salavati, Zhangrui Cheng, Ali Fouladi, Geoff Pollott, Dirk Werling, Beatriz Sanz Bernardo, Conrad Ferris, Alistair Wylie, Matt Bell, Mieke Vaneetvelde, Kristof Hermans, Miel Hostens, Geert Opsomer, Sander Moer-man, Jenne De Koster, Hannes Bogaert, Jan Vandepitte, Leila Vandevelde, Bonny Vanranst, Klaus Ingvartsen, Martin Tang Sorensen, Johanna Hoglund, Susanne Dahl, Soren Ostergaard, Janne Rothmann, Mogens Krogh, Else Meyer, Leslie Foldager, Charlotte Gaillard, Jehan Ettema, Tine Rousing, Torben Larsen, Victor H. Silva de Oliveira, Cinzia Marchitelli, Federica Signorelli, Francesco Napolitano, Bianca Moioli, Alessandra Crisà, Luca Buttazzoni, Jennifer McClure, Daragh Matthews, Francis Kearney, Andrew Cromie, Matt McClure, Shujun Zhang, Xing Chen, Huanchun Chen, Junlong Zhao, Liguo Yang, Guohua Hua, Chen Tan, Guiqiang Wang, Michel Bonneau, Marlène Sciarretta, Armin Pearn, Arnold Evertson, Linda Kosten, Anders Fogh, Thomas Andersen, Matthew Lucy, Chris Elsik, Gavin Conant, Jerry Taylor, Deborah Triant, Nicolas Gengler, Michel Georges, Frederic Colinet, Marilou Ramos Pamplona, Hedi Hammami, Catherine Bastin, Haruko Takeda, Aurelie Laine, Anne-Sophie Van Laere, Rodrigo Mota, Saied Naderi Darbagshahi, Frederic Dehareng, Clement Grelet, Amelie Vanlierde, Eric Froidmont, Frank Becker, Martin Schulze, and Sergio Palma Vera. The views expressed in this publication are the authors’ sole responsibility and do not necessarily reflect the views of the European Commission. The authors acknowledge the laboratory “Comité du Lait” (Battice, Belgium) for the Walloon milk mid-infrared spectra. The authors acknowledge the financial support of the National Fund for the Scientific Research (F.R.S-FNRS) for the SimBa research project (T02211). This project is also co-financed by the Luxembourg National Research Fund (FNR). Computational resources have been provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11 and by the Walloon Region.Funding: This research was funded by National Fund for the Scientific Research (F.R.S-FNRS) for the SimBa research project, grant number T.0221.19.
Thorup, V.M.; Edwards, D.; Friggens, N.C. On-farm estimation of energy balance in dairy cows using only frequent body weight measurements and body condition score. J. Dairy Sci. 2012, 95, 1784–1793. [CrossRef] [PubMed]
Berry, D.P.; Lee, J.M.; Macdonald, K.A.; Stafford, K.; Matthews, L.; Roche, J.R. Associations Among Body Condition Score, Body Weight, Somatic Cell Count, and Clinical Mastitis in Seasonally Calving Dairy Cattle. J. Dairy Sci. 2007, 90, 637–648. [CrossRef]
National Research Council. Nutrient Requirements of Dairy Cattle, 7th ed.; Natl. Acad. Press: Washington, DC, USA, 2001; p. 9825.
Blaxter, K.L.; Clapperton, J.L. Prediction of the amount of methane produced by ruminants. Br. J. Nutr. 1965, 19, 511–522. [CrossRef] [PubMed]
Herd, R.M.; Arthur, P.F.; Donoghue, K.A.; Bird, S.H.; Bird-Gardiner, T.; Hegarty, R.S. Measures of methane production and their phenotypic relationships with dry matter intake, growth, and body composition traits in beef cattle. J. Anim. Sci. 2014, 92, 5267–5274. [CrossRef] [PubMed]
van Straten, M.; Shpigel, N.Y.; Friger, M. Associations among patterns in daily body weight, body condition scoring, and reproductive performance in high-producing dairy cows. J. Dairy Sci. 2009, 92, 4375–4385. [CrossRef] [PubMed]
Alawneh, J.I.; Stevenson, M.A.; Williamson, N.B.; Lopez-Villalobos, N.; Otley, T. Automatic recording of daily walkover liveweight of dairy cattle at pasture in the first 100 days in milk. J. Dairy Sci. 2011, 94, 4431–4440. [CrossRef]
Soyeurt, H.; Froidmont, E.; Dufrasne, I.; Hailemariam, D.; Wang, Z.; Bertozzi, C.; Colinet, F.G.; Dehareng, F.; Gengler, N. Contribution of milk mid-infrared spectrum to improve the accuracy of test-day body weight predicted from stage, lactation number, month of test and milk yield. Livest. Sci. 2019, 227, 82–89. [CrossRef]
Heinrichs, A.J.; Rogers, G.W.; Cooper, J.B. Predicting Body Weight and Wither Height in Holstein Heifers Using Body Measurements. J. Dairy Sci. 1992, 75, 3576–3581. [CrossRef]
Heinrichs, A.J.; Heinrichs, B.S.; Jones, C.M.; Erickson, P.S.; Kalscheur, K.F.; Nennich, T.D.; Heins, B.J.; Cardoso, F.C. Short communication: Verifying Holstein heifer heart girth to body weight prediction equations. J. Dairy Sci. 2017, 100, 8451–8454. [CrossRef]
Enevoldsen, C.; Kristensen, T. Estimation of Body Weight from Body Size Measurements and Body Condition Scores in Dairy Cows. J. Dairy Sci. 1997, 80, 1988–1995. [CrossRef]
Banos, G.; Coffey, M.P. Technical note: Prediction of liveweight from linear conformation traits in dairy cattle. J. Dairy Sci. 2012, 95, 2170–2175. [CrossRef] [PubMed]
Haile-Mariam, M.; Gonzalez-Recio, O.; Pryce, J.E. Prediction of liveweight of cows from type traits and its relationship with production and fitness traits. J. Dairy Sci. 2014, 97, 3173–3189. [CrossRef] [PubMed]
Vanrobays, M.-L.; Vandenplas, J.; Hammami, H.; Froidmont, E.; Gengler, N. Short communication: Novel method to predict body weight of primiparous dairy cows throughout the lactation. J. Dairy Sci. 2015, 98, 692–697. [CrossRef] [PubMed]
Stajnko, D.; Brus, M.; Hočevar, M. Estimation of bull live weight through thermographically measured body dimensions. Comput. Electron. Agric. 2008, 61, 233–240. [CrossRef]
Tasdemir, S.; Urkmez, A.; Inal, S. Determination of body measurements on the Holstein cows using digital image analysis and estimation of live weight with regression analysis. Comput. Electron. Agric. 2011, 76, 189–197. [CrossRef]
Salau, J.; Haas, J.H.; Junge, W.; Thaller, G. Extrinsic calibration of a multi-Kinect camera scanning passage for measuring functional traits in dairy cows. Biosyst. Eng. 2016, 151, 409–424. [CrossRef]
Song, X.; Bokkers, E.A.M.; van der Tol, P.P.J.; Koerkamp, P.W.G.G.; van Mourik, S. Automated body weight prediction of dairy cows using 3-dimensional vision. J. Dairy Sci. 2018, 101, 4448–4459. [CrossRef]
Nadler, B.; Coifman, R.R. The prediction error in CLS and PLS: The importance of feature selection prior to multivariate calibration. J. Chemom. 2005, 19, 107–118. [CrossRef]
R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020.
Bjørn-Helge, M.; Wehrens, R.; Liland, K.H. Pls: Partial Least Squares and Principal Component Regression; R Package Version 2.7-2; 2019; Available online: https://CRAN.R-project.org/package=pls (accessed on 29 April 2021).
Kuhn, M. Caret: Classification and Regression Training; R Package Version 6.0-86; 2020; Available online: https://CRAN.R-project. org/package=caret (accessed on 29 April 2021).
Ragsdale, A.C. Growth standards for dairy cattle. Missouri Agric. Exp. Sin. Bull. 1934, 336. Available online: https://agris.fao. org/agris-search/search.do?recordID=US201300687537 (accessed on 13 July 2020).
Matthews, C.A.; Fohrman, M.H. Beltsville Growth Standards for Holstein Cattle; U.S. Department of Agriculture: New York, NY, USA, 1954.
Grelet, C.; Froidmont, E.; Foldager, L.; Salavati, M.; Hostens, M.; Ferris, C.P.; Ingvartsen, K.L.; Crowe, M.A.; Sorensen, M.T.; Pierna, J.F.; et al. Potential of milk mid-infrared spectra to predict nitrogen use efficiency of individual dairy cows in early lactation. J. Dairy Sci. 2020, 103. [CrossRef]
Grelet, C.; Pierna, J.A.F.; Dardenne, P.; Baeten, V.; Dehareng, F. Standardization of milk mid-infrared spectra from a European dairy network. J. Dairy Sci. 2015, 98, 2150–2160. [CrossRef] [PubMed]
Garrido-Varo, A.; Garcia-Olmo, J.; Fearn, T. A note on Mahalanobis and related distance measures in WinISI and The Unscrambler. J. Near. Infrared Spectrosc. 2019, 27, 253–258. [CrossRef]
Delhez, P.; Ho, P.N.; Gengler, N.; Soyeurt, H.; Pryce, J.E. Diagnosing the pregnancy status of dairy cows: How useful is milk mid-infrared spectroscopy? J. Dairy Sci. 2020, 103, 3264–3274. [CrossRef] [PubMed]
Kuhn, M.; Johnson, K. An Introduction to Feature Selection. In Applied Predictive Modeling; Kuhn, M., Johnson, K., Eds.; Springer: New York, NY, USA, 2013; pp. 487–519.
Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene Selection for Cancer Classification using Support Vector Machines. Mach. Learn. 2002, 46, 389–422. [CrossRef]
Vislocky, R.L.; Fritsch, J.M. Generalized Additive Models versus Linear Regression in Generating Probabilistic MOS Forecasts of Aviation Weather Parameters. Weather Forecast. 1995, 10, 669–680. [CrossRef]
John, G.H.; Kohavi, R.; Pfleger, K. Irrelevant Features and the Subset Selection Problem. In Proceedings of the Eleventh International Conference, Rutgers University, New Brunswick, NJ, USA, 10–13 July 1994; pp. 121–129. [CrossRef]
Chong, I.-G.; Jun, C.-H. Performance of some variable selection methods when multicollinearity is present. Chemometr. Intell. Lab. Syst. 2005, 78, 103–112. [CrossRef]
Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the 14th International Joint Conference on Artificial Intelligence-Volume 2, Montreal, QC, Canada, 20–25 August 1995; pp. 1137–1143.
Ho, P.N.; Marett, L.C.; Wales, W.J.; Axford, M.; Oakes, E.M.; Pryce, J.E. Predicting milk fatty acids and energy balance of dairy cows in Australia using milk mid-infrared spectroscopy. Anim. Prod. Sci. 2020, 60, 164–168. [CrossRef]
Bastin, C.; Gengler, N.; Soyeurt, H. Phenotypic and genetic variability of production traits and milk fatty acid contents across days in milk for Walloon Holstein first-parity cows. J. Dairy Sci. 2011, 94, 4152–4163. [CrossRef]
Karoui, R.; Mouazen, A.M.; Dufour, E.; Pillonel, L.; Schaller, E.; Picque, D.; De Baerdemaeker, J.; Bosset, J.O. A comparison and joint use of NIR and MIR spectroscopic methods for the determination of some parameters in European Emmental cheese. Eur. Food Res. Technol. 2006, 223, 44–50. [CrossRef]
Soyeurt, H.; Misztal, I.; Gengler, N. Genetic variability of milk components based on mid-infrared spectral data. J. Dairy Sci. 2010, 93, 1722–1728. [CrossRef]
Martín-del-Campo, S.T.; Picque, D.; Cosío-Ramírez, R.; Corrieu, G. Evaluation of Chemical Parameters in Soft Mold-Ripened Cheese During Ripening by Mid-Infrared Spectroscopy. J. Dairy Sci. 2007, 90, 3018–3027. [CrossRef]
Zaalberg, R.M.; Shetty, N.; Janss, L.; Buitenhuis, A.J. Genetic analysis of Fourier transform infrared milk spectra in Danish Holstein and Danish Jersey. J. Dairy Sci. 2019, 102, 503–510. [CrossRef]
Picque, D.; Lefier, D.; Grappin, R.; Corrieu, G. Monitoring of fermentation by infrared spectrometry: Alcoholic and lactic fermentations. Anal. Chim. Acta 1993, 279, 67–72. [CrossRef]
Walsh, S.W.; Williams, E.J.; Evans, A.C.O. A review of the causes of poor fertility in high milk producing dairy cows. Anim. Reprod. Sci. 2011, 123, 127–138. [CrossRef] [PubMed]
Dettmann, F.; Warner, D.; Buitenhuis, B.; Kargo, M.; Kjeldsen, A.M.H.; Nielsen, N.H.; Lefebvre, D.M.; Santschi, D.E. Fatty Acid Profiles from Routine Milk Recording as a Decision Tool for Body Weight Change of Dairy Cows after Calving. Animals 2020, 10, 1958. [CrossRef] [PubMed]
Gross, J.; van Dorland, H.A.; Bruckmaier, R.M.; Schwarz, F.J. Milk fatty acid profile related to energy balance in dairy cows. J. Dairy Res. 2011, 78, 479–488. [CrossRef] [PubMed]
Saussez, G. Contribution à L’étude de L’efficience Énergétique des Vaches Laitières en Wallonie; Université de Liège: Liège, Belgique, 2017.