Article (Scientific journals)
Validation of Dairy Cow Bodyweight Prediction Using Traits Easily Recorded by Dairy Herd Improvement Organizations and Its Potential Improvement Using Feature Selection Algorithms.
Tedde, Anthony; Grelet, Clément; Ho, Phuong N et al.
2021In Animals, 11 (5), p. 1288
Peer Reviewed verified by ORBi
 

Files


Full Text
animals-11-01288-v2.pdf
Author postprint (765.03 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
dairy cow bodyweight; dairy cows; dimensionality reduction; feature selection; machine learning; mid infrared spectra; partial least square; Animal Science and Zoology; Veterinary (all); General Veterinary
Abstract :
[en] Knowing the body weight (BW) of a cow at a specific moment or measuring its changes through time is of interest for management purposes. The current work aimed to validate the feasibility of predicting BW using the day in milk, parity, milk yield, and milk mid-infrared (MIR) spectrum from a multiple-country dataset and reduce the number of predictors to limit the risk of over-fitting and potentially improve its accuracy. The BW modeling procedure involved feature selections and herd-independent validation in identifying the most interesting subsets of predictors and then external validation of the models. From 1849 records collected in 9 herds from 360 Holstein cows, the best performing models achieved a root mean square error (RMSE) for the herd-independent validation between 52 ± 2.34 kg to 56 ± 3.16 kg, including from 5 to 62 predictors. Among these models, three performed remarkably well in external validation using an independent dataset (N = 4067), resulting in RMSE ranging from 52 to 56 kg. The results suggest that multiple optimal BW predictive models coexist due to the high correlations between adjacent spectral points.
Disciplines :
Agriculture & agronomy
Author, co-author :
Tedde, Anthony  ;  Université de Liège - ULiège > TERRA Research Centre ; National Funds for Scientific Research, 1000 Brussels, Belgium
Grelet, Clément ;  Walloon Agricultural Research Center (CRA-W), 5030 Gembloux, Belgium
Ho, Phuong N;  Agriculture Victoria Research, Centre for AgriBioscience, AgriBio, Bundoora, VIC 3083, Australia
Pryce, Jennie E;  Agriculture Victoria Research, Centre for AgriBioscience, AgriBio, Bundoora, VIC 3083, Australia ; School of Applied Systems Biology, La Trobe University, 5 Ring Road, Bundoora, VIC 3083, Australia
Hailemariam, Dagnachew;  Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
Wang, Zhiquan;  Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
Plastow, Graham;  Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
Gengler, Nicolas  ;  Université de Liège - ULiège > Département GxABT > Ingénierie des productions animales et nutrition
Brostaux, Yves  ;  Université de Liège - ULiège > Département GxABT > Modélisation et développement
Froidmont, Eric ;  Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique et électrochimie
Dehareng, Frédéric  ;  Université de Liège - ULiège > TERRA Research Centre
Bertozzi, Carlo;  Walloon Breeding Association, 5590 Ciney, Belgium
Crowe, Mark A;  UCD School of Veterinary Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
Dufrasne, Isabelle  ;  Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH) > FARAH: Productions animales durables
Soyeurt, Hélène  ;  Université de Liège - ULiège > Département GxABT > Modélisation et développement
GplusE Consortium Group
More authors (6 more) Less
Language :
English
Title :
Validation of Dairy Cow Bodyweight Prediction Using Traits Easily Recorded by Dairy Herd Improvement Organizations and Its Potential Improvement Using Feature Selection Algorithms.
Publication date :
30 April 2021
Journal title :
Animals
eISSN :
2076-2615
Publisher :
MDPI, Switzerland
Volume :
11
Issue :
5
Pages :
1288
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
National Fund for the Scientific Research
Funding text :
Acknowledgments: This work is Supported by the Luxembourg National Research Fund (INTER/FNRS/18/12987586/SimBa) and by the Fonds de la Recherche Scientifique-FNRS under Grant n◦ T.0221.19. The Genotype Plus Environment (GplusE) Project has received funding from the European Union’s Seventh Framework Programme for research, technological development, and demonstration under grant agreement no. 613689. List of authors in the GplusE consortium: Mark Crowe, Alan Fahey, Fiona Carter, Elizabeth Matthews, An-dreia Santoro, Colin Byrne, Pauline Rudd, Roisin O’Flaherty, Sinead Hallinan, Claire Wathes, Mazdak Salavati, Zhangrui Cheng, Ali Fouladi, Geoff Pollott, Dirk Werling, Beatriz Sanz Bernardo, Conrad Ferris, Alistair Wylie, Matt Bell, Mieke Vaneetvelde, Kristof Hermans, Miel Hostens, Geert Opsomer, Sander Moer-man, Jenne De Koster, Hannes Bogaert, Jan Vandepitte, Leila Vandevelde, Bonny Vanranst, Klaus Ingvartsen, Martin Tang Sorensen, Johanna Hoglund, Susanne Dahl, Soren Ostergaard, Janne Rothmann, Mogens Krogh, Else Meyer, Leslie Foldager, Charlotte Gaillard, Jehan Ettema, Tine Rousing, Torben Larsen, Victor H. Silva de Oliveira, Cinzia Marchitelli, Federica Signorelli, Francesco Napolitano, Bianca Moioli, Alessandra Crisà, Luca Buttazzoni, Jennifer McClure, Daragh Matthews, Francis Kearney, Andrew Cromie, Matt McClure, Shujun Zhang, Xing Chen, Huanchun Chen, Junlong Zhao, Liguo Yang, Guohua Hua, Chen Tan, Guiqiang Wang, Michel Bonneau, Marlène Sciarretta, Armin Pearn, Arnold Evertson, Linda Kosten, Anders Fogh, Thomas Andersen, Matthew Lucy, Chris Elsik, Gavin Conant, Jerry Taylor, Deborah Triant, Nicolas Gengler, Michel Georges, Frederic Colinet, Marilou Ramos Pamplona, Hedi Hammami, Catherine Bastin, Haruko Takeda, Aurelie Laine, Anne-Sophie Van Laere, Rodrigo Mota, Saied Naderi Darbagshahi, Frederic Dehareng, Clement Grelet, Amelie Vanlierde, Eric Froidmont, Frank Becker, Martin Schulze, and Sergio Palma Vera. The views expressed in this publication are the authors’ sole responsibility and do not necessarily reflect the views of the European Commission. The authors acknowledge the laboratory “Comité du Lait” (Battice, Belgium) for the Walloon milk mid-infrared spectra. The authors acknowledge the financial support of the National Fund for the Scientific Research (F.R.S-FNRS) for the SimBa research project (T02211). This project is also co-financed by the Luxembourg National Research Fund (FNR). Computational resources have been provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11 and by the Walloon Region.Funding: This research was funded by National Fund for the Scientific Research (F.R.S-FNRS) for the SimBa research project, grant number T.0221.19.
Available on ORBi :
since 16 April 2022

Statistics


Number of views
79 (8 by ULiège)
Number of downloads
29 (1 by ULiège)

Scopus citations®
 
11
Scopus citations®
without self-citations
7
OpenCitations
 
3
OpenAlex citations
 
12

Bibliography


Similar publications



Contact ORBi