Bioindicators; Health risk assessment; ICP-MS; Metallic pollution; Terrestrial invertebrates; Ecology, Evolution, Behavior and Systematics; Agronomy and Crop Science
Abstract :
[en] Morocco is the first land snail exporter in the world and the majority of snail production consists of individuals collected from nature. These gastropods are known to accumulate high levels of trace metals in their tissues hence the main objective of this study. We aimed firstly to investigate the bioaccumulation efficiency of Pb, Cd, Zn, Cu and Ca in Otala spp. snails, the most commonly widespread and the most consumed species in the Marrakech region, and then evaluate the potential risk on human health. Soil, foot, viscera and shell of adult snails were picked from six sampling stations in Al Haouz plain and analysed by ICP-MS. Results showed that the investigated snails accumulated all the examined elements with significant variations among the different tissues. The Principal Component and Bioaccumulation Factor analyses demonstrated that Otala spp. are macroconcentrators for Cd and microconcentrators for Pb. Furthermore, their shell accumulated more Ca, foot accumulated more Cu and viscera accumulated more Zn, Cd and Pb. In addition, the detected concentrations of toxic metals (Pb and Cd) were higher than the maximum admissible limits according to the European regulation except for Pb in the reference station. In conclusion, Otala spp. snails in our region can be used as bioindicators of trace element bioavailability and their consumption must be limited to avoid any possible intoxications.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Sebban, H.; Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakech, Morocco
Ait Belcaid, H.; Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakech, Morocco
El Alaoui El Fels, A.; Department of Biology, Faculty of Science and Techniques, Cadi Ayyad University, Marrakech, Morocco
Bouriqi, Abdelillah ; Université de Liège - ULiège > Freshwater and OCeanic science Unit of reSearch (FOCUS) ; Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakech, Morocco
Pineau, A.; Department of Clinical Pharmacology, University Hospital of Nantes, Nantes, France
Sedki, A.; Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakech, Morocco
Language :
English
Title :
TRACE ELEMENT BIOACCUMULATION IN THE EDIBLE MILK SNAIL (OTALA LACTEA) AND CABRILLA (OTALA PUNCTATA) IN MARRAKECH, MOROCCO
Abdel Gawad, S. (2018): Concentrations of heavy metals in water, sediment and mollusk gastropod, Lanistes carinatus from Lake Manzala, Egypt. – The Egyptian Journal of Aquatic Research 44(2): 77-82.
Adediran, J. A., De Baets, N., Mnkeni, P. N. S., Kienkens, L., Muyima, N. Y. O., Thys, A. (2003): Organic waste materials for soil fertility improvement in the border region of the eastern cape. South Africa. – Biol. Agric. Hortic. 20: 283-300.
American Psychological Association (APA). (2018): Guidelines for Ethical Conduct in the Care and Use of Nonhuman Animals in Research. – Committee on Animal Research and Ethics (CARE), Washington, DC.
Anim, A. K., Ackah, M., Fianko, J. R., Kpattah, L., Osei, J., SerforArmah, Y., Gyamfi, E. T. (2011): Trace elements composition of Achatina achatina samples from the Madina Market in Accra, Ghana. – Research Journal of Environmental and Earth Sciences 3: 564-570.
Bao, S., Huang, J., Liu, X., Tang, W., Fang, T. (2018): Tissue distribution of Ag and oxidative stress responses in the freshwater snail Bellamya aeruginosa exposed to sediment-associated Ag nanoparticles. Sci Total Environ. 644: 736-746.
Bargagli, R. (1998): Trace Elements in Terrestrial Plants: An Ecophysiological Approach to Biomonitoring and Biorecovery. – Springer-Verlag, Berlin.
Baroudi, F., Al Alam, J., Fajloun, Z., Millet, M. (2020): Snail as sentinel organism for monitoring the environmental pollution; a review. – Ecological Indicators 113: 106240.
Boshoff, M., Jordaens, K., Backeljau, T., Lettens, S., Tack, F., Vandecasteele, B., De Jonge, M., Bervoets, L. (2013): Organ-and species-specific accumulation of metals in two land snail species (Gastropoda, Pulmonata). – Science of The Total Environment 449: 470-481.
Caracciolo, A. B., Terenzi, V. (2021): Rhizosphere microbial communities and heavy metals. – Microorganisms 9(7): 1462.
Chrzan, A. (2017): The impact of heavy metals on the soil fauna of selected habitats in Niepołomice forest. – Polish J. Soil Sci. 2: 291-300.
Dallinger, R., Wieser, W. (1984): Patterns of accumulation, distribution and liberation of Zn, Cu, Cd, and Pb in different organs of the land snail Helix pomatia L. Comp. Biochem. – Phys. C 79: 117-124.
De Roma, A., Neola, B., Serpe, F. P., Sansone, D., Picazio, G., Cerino, P. M. (2017): Land snails (Helix aspersa) as Bioindicators of Trace Element Contamination in Campania (Italy). – OALib 4(2): 1-12.
De Wolf, H., Ulomi, S. A., Backeljau, T., Pratap, H. B., Blust, R. (2001): Heavy metal levels in the sediments of four Dar es Salaam mangroves accumulation in, and effect on the morphology of the periwinkle, Littoraria scabra (Mollusca: Gastropoda). – Environment International 26: 243-249.
Deng, P. Y., Shu, W. S., Lan, C. Y., Liu, W. (2008): Metal contamination in the sediment, pondweed, and snails of a stream receiving effluent from a lead/zinc mine in southern China. – Bull Environ Contam Toxicol. 81: 69-74.
Ebenso, I. E. (2003): Dietary calcium supplement for edible tropical land snails Archachatina marginata in Niger Delta, Nigeria. – Livestock Research for Rural Development 15: 1-5.
Ejidike, I. P., Onianwa, P. C. (2015): Assessment of trace metals concentration in tree barks as indicator of atmospheric pollution within Ibadan City, South-West, Nigeria. – J. Anal. Methods Chem. 243601.
Esposito, M., Serpe, F. P., Neola, B., Sansone, D., Fiorito, F., Cerino, P. (2016): Use of Snails (Helix aspersa) as Sentinels to Evaluate Environmental Contamination by Polycyclic Aromatic Hydrocarbons and Trace Element. – 70th Convegno SISVET ts Conference, Palermo, Italy.
Focus, E., Rwiza, M. J., Mohammed, N. K., Banzi, F. P. (2021): Health risk assessment of trace elements in soil for people living and working in a mining area. – Journal of Environmental and Public Health. DOI: 10.1155/2021/9976048.
Fritsch, C., Cœurdassier, M., Gimbert, F., Crini, N., Scheifler, R., de Vaufleury, A. (2011): Investigations of responses to metal pollution in land snail populations (Cantareus aspersus and Cepaea nemoralis) from a smelter-impacted area. – Ecotoxicology 20: 739-59.
Ghemari, C., Waterlot, C., Ayari, A., Leclercq, J., Douay, F., Nasri-Ammar, K. (2017): Assessment of heavy metals in soil and terrestrial isopod Porcellio laevis in Tunsian industrialized areas. – Environ Earth 76: 623.
Gomot De Vaufeury, A., Pihan, F. (2000): Growing snails used as sentinels to evaluate terrestrial environment contamination by trace elements. – Chemosphere 40: 275-284.
Gomot, A. (1998): Biochemical composition of Helix snails: influence of genetic and physiopathological factors. – Journal of Mollusca. Studies 64: 173-181.
Herbert, D. G. (2010): The Introduced Terrestrial Mollusca of South Africa. – SANBI Biodiversity Series 15. South African National Biodiversity Institute, Pretoria.
High Commission for Planning, Regional Planning Directorate for the Marrakech-Safi Region (2018): Regional Monograph. – Marrakech, Safi Region.
Jahan, S., Strezov, V. (2019): Assessment of trace elements pollution in the sea ports of New South Wales (NSW), Australia using oysters as bioindicators. – Sci Rep. 9: 1416.
Khalil, A. M. (2013): The effects of soil heavy metals pollution and seasonal variations on gametogenesis and energy reserves of the land snail Eobania vermiculata. – J Biol Earth Sci. 3(2): 206-213.
Kubier, A., Wilkin, R. T., Pichler, T. (2019): Cadmium in soils and groundwater: a review. – Applied Geochemistry 108: 104388.
Kumar, A., Cabral-Pinto, M. M. S., Chaturvedi, A. K., Shabnam, A. A., Subrahmanyam, G., Mondal, R., Gupta, D. K., Malyan, S. K., Kumar, S., Khan, A. S., Yadav, K. K. (2020): Lead toxicity: health hazards, influence on food chain, and sustainable remediation approaches. – International Journal of Environmental Research and Public Health 17(7): 2179.
Lanno, R. P., Oorts, K., Smolders, E., Albanese, K., Chowdhurye, M. J. (2019): Effects of soil properties on the toxicity and bioaccumulation of lead in soil invertebrates. – Environmental Toxicology and Chemistry 38: 1486-1494.
Larba, R., Soltani, N. (2014): Use of the land snail Helix aspersa for monitoring heavy metal soil contamination in Northeast Algeria. – Environmental Monitoring and Assessment 186: 4987-4995.
Luczynska, J., Paszczyk, B., Luczynski, M. J. (2018): Fish as a bioindicator of heavy metals pollution in aquatic ecosystem of Pluszne Lake, Poland, and risk assessment for consumer’s health. – Ecotoxicol Environ Saf. 153: 60-67.
Madejón, P., Arrébola, J., Madejón, E., Burgos, P., López-Garrido, R., Cárcaba, A., Cabrera, F., Murillo, J. M. (2013): The snail Theba pisana as an indicator of soil contamination by trace elements: potential exposure for animals and humans. – J. Sci. Food Agric. 93: 2259-2266.
Magdalena, B., Kurt, J., Thierry, B., Suzanna, L., Filip, T., Bart, V., Maarten, D. J., Lieven, B. (2013): Organ-and species-specific accumulation of metals in two land snail species (Gastropoda, Pulmonata). – Science of the Total Environment 449: 470-481.
Manev, I., Kirov, V., Neshovska, H. (2020): Heavy metals accumulation in black sea ecosystems: seawater, sediment, algae, benthic organisms. – Tradition And Modernity in Veterinary Medicine 5: 88-99.
Manzl, C., Krumschnabel, G., Schwarzbaum, P. J., Dallinger, R. (2004): Acute toxicity of cadmium and copper in hepatopancreas cells from the Roman snail (Helix pomatia). – Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 138: 45-52.
Minodora, M. (2017): Soil invertebrates-a useful tool in biomonitoring of heavy metal pollution. A Review. – Studia Universitatis “Vasile Goldiş”, Seria Ştiinţele Vieţii 27(4): 247-258.
Mleiki, A., Irizar, A., Zaldibar, B., El Menif, N. T., Marigómez, I. (2016): Bioaccumulation and tissue distribution of Pb and Cd and growth effects in the green garden snail, Cantareus apertus (Born, 1778), after dietary exposure to the metals alone and in combination. – Sci Tot Environ. 547: 148-156.
Mohammadein, A., El-Shenawy, N. S., Al-Fahmie, Z. H. H. (2013): Bioaccumulation and histopathological changes of the digestive gland of the land snail Eobania vermiculata (Mollusca: Gastropoda), as biomarkers of terrestrial heavy metal pollution in Taif city. – Ital. J. Zool. 80: 345-357.
Müller, O. F. (1774): Vermium terrestrium et fluviatilium, seu animalium infusorium, Helminthicorum, et testaceorum, non marinorum, succincta historia. V 2: I-XXXVI, 1-214. – Heineck et Faber, Havnia et Lipsia.
Munees, A. (2019): Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: paradigms and prospects. – Arabian Journal of Chemistry 12(7): 1365-1377.
Nica, D. V., Bordean, D-M., Hărmănescu, M., Buram, G. I. (2014): Interactions among heavy metals (Cu, Cd, Zn, Pb) and metallic macroelements (K, Ca, Na, Mg) in Roman snail (Helix pomatia) soft tissues. – Acta Metallomica-MEEMB 11: 65-71.
Notten, M., Oosthoek, A., Rozema, J., Aerts, R. (2005): Heavy metal concentrations in a soil–plant–snail food chain along a terrestrial soil pollution gradient. – Environ. Pollut. 138: 178-190.
Orcid, O. K., Orcid, O. S. (2019): Heavy metals in the dandelion and apple tree pollen from the different terrestrial ecosystems of the Carpathian region. – Acta Sci. Pol. Zootechnica 18(3): 15-20.
Otitoloju, A. A., Ajikobi, D. O., Egonmwan, R. I. (2009): Histopathology and bioaccumulation of heavy metals (Cu & Pb) in the giant land snail, Archachatina marginata (Swainson). – The Open Environmental Pollution and Toxicology Journal 1: 79-88.
Pankova, E. S., Kamnev, A. N., Golubeva, E. I. (2015): Features of the distribution of heavy metals in brown algae Cystoseira barbata. – International Popular Science Journal Europe-Asia. Earth Sciences 5: 25-28.
Parmar, T., Rawtani, D., Agrawal, Y. (2016): Bioindicators: the natural indicator of environmental pollution. – Frontiers in Life Science 9: 1-9.
Parolini, M., Sturini, M., Maraschi, F., Profumo, A., Costanzo, A., Caprioli, M., Rubolini, D., Ambrosini, R., Canova, L. (2021): Trace elements fingerprint of feathers differs between breeding and non-breeding areas in an Afro-Palearctic migratory bird, the barn swallow (Hirundo rustica). – Environ Sci Pollut Res Int. 28(13): 15828-15837.
Pauget, B. (2012): Determination of the soil parameters that influence the metal bioavailability and accumulation for the snails (Cantareus aspersus). – Thesis Université de Franche-comté U.F.R. des sciences et techniques Laboratoire Chrono-Environnement (UMR CNRS/UFC 6249, Usc INRA).
Pauget, B., Faure, O., Conord, C., Crini, N., De Vaufleury, A. (2015): In situ assessment of phyto and zooavailability of trace elements: a complementary approach to chemical extraction procedures. – Sci Total Environ 521-522: 400-410.
Rainbow, P. S. (2007): Trace metal bioaccumulation: model, metabolic availability and toxicity. – Environment International 33(4): 576-82.
Regoli, F., Gorbi, S., Fattorini, D., Tedesco, S., Notti, A., Machella, N., Bocchetti, R., Benedetti, M., Piva, F. (2006): Use of the land snail Helix aspersa as sentinel organism for monitoring ecotoxicologic effects of urban pollution: an integrated approach. – Environ. Health Perspect. 114: 63-69.
Robinson, D. G., Redmond, L., Hennessey, R. (1998): Importation and interstate movement of live, edible land snails: Cantareus apertus (Born), Cryptomphalus aspersus (Müller), Eobania vermiculata (Müller), Helix pomatia Linné, and Otala lactea (Müller) (Pulmonata: Helicidae). – Qualitative Pest Risk Assessment. USDA APHIS PPQ Scientific Services, Riverdale, MD.
Scaffardi, E., Ru, G., Giordana, G. (2007): Accumulo di metalli pesanti in chiocciole della specie Helix pomatia L. (Pulmonata, Helicidae) destinate al consumo umano. – Il Chirone 1: 8-11.
Shahid, M., Dumat, C., Khalid, S., Schreck, E., Xiong, T., Niazi, N. K. (2016): Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. – Journal of Hazardous Materials, Elsevier 325: 36-58.
Shotuyo, A. L., Bambgose, O., Oduntan, O. O., et al. (2016): Levels of some heavy metals in African Giant Land Snail (Archachatina marginata) in major markets in Abeokuta, South West Nigeria. – International Journal of Molecular Ecology and Conservation 6(1): 1-6.
Ugbaja, R. N., Enilolobo, M. A., James, A. S., Akinhanmi, T. F., Akamo, A. J., Babayemi, D. O., Ademuyiwa, O. (2020): Bioaccumulation of heavy metals, lipid profiles, and antioxidant status of snails (Achatina achatina) around cement factory vicinities. – Toxicol. Ind. Health 36(11): 863-875.
Vukašinovic-Pešic, V., Pilarczyk, B., Miller, T., Rajkowskamysliwiec, R., Podlasinska, J., Tomza-Marciniak, A., Blagojevic, N., Trubljanin, N., Zawal, A., Pešic, V. (2020): Toxic elements and mineral content of different tissues of endemic edible snails (Helix vladika and H. secernenda) of Montenegro. – Foods 9: 731.
Wang, K., Qiao, Y., Zhang, H., Yue, S., Li, H., Ji, X., Liu, L. (2018): Bioaccumulation of heavy metals in earthworms from field contaminated soil in a subtropical area of China. – Ecotoxicology and Environmental Safety 148: 876-883.
Wijnhoven, S., Leuven, R., van der Velde, G., Jungheim, G., Koelemij, E., de Vries, F., Eijsackers, H., Smits, A. (2007): Heavy-metal concentrations in small mammals from a diffusely polluted floodplain: importance of species-and location specific characteristics. – Archives of Environmental Contamination and Toxicology 52: 603-613.