Sciences de l'ingénieur; cohesion; particle size distribution; pedotransfer function; shear strength; suction stress; water retention curve
Abstract :
[en] This study proposed two pedotransfer functions (PTFs) to estimate sandy soil water retention curves. It is based on the van Genuchten's water retention model and from a semiphysical and semistatistical approach. Basic gradation parameters of d60 as particle size at 60% passing and the coefficient of uniformity Cu are employed in the PTFs with two idealized conditions, the monosized scenario and the extremely polydisperse condition, satisfied. Water retention tests are carried out on eight granular materials with narrow particle size distributions as supplementary data of the UNSODA database. The air entry value is expressed as inversely proportional to d60 and the parameter n, which is related to slope of water retention curve, is a function of Cu. The proposed PTFs, although have fewer parameters, have better fitness than previous PTFs for sandy soils. Furthermore, by incorporating with the suction stress definition, the proposed pedotransfer functions are imbedded in shear strength equations which provide a way to estimate capillary induced tensile strength or cohesion at a certain suction or degree of saturation from basic soil gradation parameters. The estimation shows quantitative agreement with experimental data in literature, and it also explains that the capillary-induced cohesion is generally higher for materials with finer mean particle size or higher polydispersity.
Disciplines :
Civil engineering
Author, co-author :
Wang, Ji-Peng
Hu, Nian
François, Bertrand ; Université de Liège - ULiège > Urban and Environmental Engineering
Lambert, Pierre
Language :
English
Title :
Estimating Water Retention Curves and Strength Properties of Unsaturated Sandy Soils from Basic Soil Gradation Parameters
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Alonso, E. E., J.-M. Pereira, J. Vaunat, and S. Olivella (2010), A microstructurally based effective stress for unsaturated soils, Géotechnique, 60(12), 913–925, doi:10.1680/geot.8.P.002.
Arya, L. M., and J. F. Paris (1981), A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data, Soil Sci. Soc. Am. J., 45(6), 1023, doi:10.2136/sssaj1981.03615995004500060004x.
Arya, L. M., F. J. Leij, M. T. van Genuchten, and P. J. Shouse (1999), Scaling parameter to predict the soil water characteristic from particle-size distribution data, Soil Sci. Soc. Am. J., 63(3), 510, doi:10.2136/sssaj1999.03615995006300030013x.
Aubertin, M., M. Mbonimpa, B. Bussière, and R. P. Chapuis (2003), A model to predict the water retention curve from basic geotechnical properties, Can. Geotech. J., 40(6), 1104–1122, doi:10.1139/t03-054.
Baltodano-Goulding, R. (2006), Tensile strength, shear strength, and effective stress for unsaturated sand, PhD thesis, Univ. of Missouri Columbia, Columbia, Mo.
Bishop, A. W., and G. E. Blight (1963), Some aspects of effective stress in saturated and partly saturated soils, Géotechnique, 13(3), 177–197, doi:10.1680/geot.1963.13.3.177.
Bouma, J. (1989), Using soil survey data for quantitative land evaluation, in Advances in Soil Science, pp. 177–213, Springer, New York.
Buckingham, E. (1914), On physically similar systems; illustrations of the use of dimensional equations, Phys. Rev., 4(4), 345–376, doi:10.1103/PhysRev.4.345.
Chiu, C. F., W. M. Yan, and K.-V. Yuen (2012), Estimation of water retention curve of granular soils from particle-size distribution—A Bayesian probabilistic approach, Can. Geotech. J., 49(9), 1024–1035, doi:10.1139/t2012-062.
Dane, J. H., and J. W. Hopmans (2002), Hanging water column, in Methods of Soil Analysis: Part 4 Physical Methods, edited by J. H. Dane and C. Topp, pp. 680–683, Soil Sci. Soc. of Am., Madison, Wis.
de Jong, R., and K. Loebel (1982), Empirical relations between soil components and water retention at 1/3 and 15 atmospheres, Can. J. Soil Sci., 62(2), 343–350, doi:10.4141/cjss82-038.
Feia, S., S. Ghabezloo, J. F. Bruchon, J. Sulem, J. Canou, and J. C. Dupla (2014), Experimental evaluation of the pore-access size distribution of sands, Geotech. Test. J., 37(4), 1–8, doi:10.1520/GTJ20130126.
Fredlund, D., H. Rahardjo, and J. Gan (1987), Non-linearity of strength envelope for unsaturated soils, in Proceedings of the 6th International Conference on Expansive, pp. 49–54, New Delhi, Boca Raton, Fla.
Fredlund, D. G., N. R. Morgenstern, and R. A. Widger (1978), The shear strength of unsaturated soils, Can. Geotech. J., 15(3), 313–321, doi:10.1139/t78-029.
Fredlund, D. G., A. Xing, M. D. Fredlund, and S. L. Barbour (1996), The relationship of the unsaturated soil shear to the soil-water characteristic curve, Can. Geotech. J., 33(3), 440–448, doi:10.1139/t96-065.
Fredlund, M. D., D. G. Fredlund, and G. W. Wilson (1997), Prediction of the soil-water characteristic curve from grain-size distribution and volume-mass properties, in Proceedings of the 3rd Brazilian Symposium on Unsaturated Soils, pp. 13–23, Rio de Janeiro, Brazil.
Fredlund, M. D., G. W. Wilson, and D. G. Fredlund (2002), Use of the grain-size distribution for estimation of the soil-water characteristic curve, Can. Geotech. J., 39(5), 1103–1117, doi:10.1139/t02-049.
Gallage, C. P. K., and T. Uchimura (2006), Effects of wetting and drying on the unsaturated shear strength of a silty sand under low suction, in Unsaturated Soils 2006, pp. 1247–1258, Am. Soc. of Civ. Eng., Reston, Va.
Gallage, C. P. K., and T. Uchimura (2010), Effects of dry density and grain size distribution on soil-water characteristic curves of sandy soils, Soils Found., 50(1), 161–172, doi:10.3208/sandf.50.161.
Ghanbarian-alavijeh, B., A. Liaghat, H. Guan-Hua, and M. Th. van Genuchten (2010), Estimation of the van Genuchten soil water retention properties from soil textural data, Pedosphere, 20(4), 456–465, doi:10.1016/S1002-0160(10)60035-5.
Gupta, S. C., and W. E. Larson (1979), Estimating soil water retention characteristics from particle size distribution, organic matter percent, and bulk density, Water Resour. Res., 15(6), 1633–1635, doi:10.1029/WR015i006p01633.
Haverkamp, R., and J. Parlange (1986), Predicting the water-retention curve from particle-size distribution. 1. Sandy soils without organic matter, Soil Sci., 142(6), 325–339.
Hazen, A. (1892), Physical Properties of Sands and Gravels With Reference to Their Use Infiltration.
Hossain, M. A., and J.-H. Yin (2010), Shear strength and dilative characteristics of an unsaturated compacted completely decomposed granite soil, Can. Geotech. J., 47(10), 1112–1126, doi:10.1139/T10-015.
Hwang, S. I., and S. E. Powers (2003), Using particle-size distribution models to estimate soil hydraulic properties, Soil Sci. Soc. Am. J., 67(4), 1103, doi:10.2136/sssaj2003.1103.
Kenney, T. C., D. Lau, and G. I. Ofoegbu (1984), Permeability of compacted granular materials, Can. Geotech. J., 21(4), 726–729, doi:10.1139/t84-080.
Khalili, N., and M. H. Khabbaz (1998), A unique relationship for χ for the determination of the shear strength of unsaturated soils, Géotechnique, 48(5), 681–687, doi:10.1680/geot.1998.48.5.681.
Kim, T.-H., and C. Hwang (2003), Modeling of tensile strength on moist granular earth material at low water content, Eng. Geol., 69(3–4), 233–244, doi:10.1016/S0013-7952(02)00284-3.
Kim, T.-H., and S. Sture (2008), Capillary-induced tensile strength in unsaturated sands, Can. Geotech. J., 45(5), 726–737, doi:10.1139/T08-017.
Konrad, J.-M., and M. Lebeau (2015), Capillary-based effective stress formulation for predicting shear strength of unsaturated soils, Can. Geotech. J., 52(12), 2067–2076, doi:10.1139/cgj-2014-0300.
Leij, F. J., W. J. Alves, M. T. van Genuchten, and J. R. Williams (1996), The UNSODA Unsaturated Soil Hydraulic Database: User's Manual, Natl. Risk Manage. Res. Lab., Off. of Res. and Dev., U.S. Environ. Prot. Agency, Washington, D. C.
Likos, W. J., A. Wayllace, J. Godt, and N. Lu (2010), Modified direct shear apparatus for unsaturated sands at low suction and stress, Geotech. Test. J., 33(4), 1–13, doi:10.1520/GTJ102927.
Lu, N., and W. J. Likos (2006), Suction stress characteristic curve for unsaturated soil, J. Geotech. Geoenviron. Eng., 132(2), 131–142, doi:10.1061/(ASCE)1090-0241(2006)132:2(131).
Lu, N., B. Wu, and C. P. Tan (2007), Tensile strength characteristics of unsaturated sands, J. Geotech. Geoenviron. Eng., 133(2), 144–154, doi:10.1061/(ASCE)1090-0241(2007)133:2(144).
Lu, N., T.-H. Kim, S. Sture, and W. J. Likos (2009), Tensile strength of unsaturated sand, J. Eng. Mech., 135(12), 1410–1419, doi:10.1061/(ASCE)EM.1943-7889.0000054.
Lu, N., J. W. Godt, and D. T. Wu (2010), A closed-form equation for effective stress in unsaturated soil, Water Resour. Res., 46, W05515, doi:10.1029/2009WR008646.
Matsushi, Y., and Y. Matsukura (2006), Cohesion of unsaturated residual soils as a function of volumetric water content, Bull. Eng. Geol. Environ., 65(4), 449–455, doi:10.1007/s10064-005-0035-9.
Mbonimpa, M., M. Aubertin, R. P. Chapuis, and B. Bussière (2002), Practical pedotransfer functions for estimating the saturated hydraulic conductivity, Geotech. Geol. Eng., 20(3), 235–259, doi:10.1023/A:1016046214724.
Minasny, B., A. B. McBratney, and K. L. Bristow (1999), Comparison of different approaches to the development of pedotransfer functions for water-retention curves, Geoderma, 93(3), 225–253, doi:10.1016/S0016-7061(99)00061-0.
O¨berg, A., and G. Sa¨llfors (1997), Determination of shear strength parameters of unsaturated silts and sands based on the water retention curve, Geotech. Test. J., 20(1), 40, doi:10.1520/GTJ11419J.
Oh, S., and N. Lu (2014), Uniqueness of the suction stress characteristic curve under different confining stress conditions, Vadose Zone J., 13(5), 1–10, doi:10.2136/vzj2013.04.0077.
Oh, S., N. Lu, Y. K. Kim, S. J. Lee, and S. R. Lee (2012), Relationship between the soil-water characteristic curve and the suction stress characteristic curve: Experimental evidence from residual soils, J. Geotech. Geoenviron. Eng., 138(1), 47–57, doi:10.1061/(ASCE)GT.1943-5606.0000564.
Or, D., and M. Tuller (1999), Liquid retention and interfacial area in variably saturated porous media: Upscaling from single-pore to sample-scale model, Water Resour. Res., 35(12), 3591–3605, doi:10.1029/1999WR900262.
Patil, N. G., and S. K. Singh (2016), Pedotransfer functions for estimating soil hydraulic properties: A review, Pedosphere, 26(4), 417–430, doi:10.1016/S1002-0160(15)60054-6.
Puckett, W. E., J. H. Dane, and B. F. Hajek (1985), Physical and mineralogical data to determine soil hydraulic properties, Soil Sci. Soc. Am. J., 49(4), 831, doi:10.2136/sssaj1985.03615995004900040008x.
Rawles, W., and D. Brakensiek (1982), Estimating soil water retention from soil properties, J. Irrig. Drain., 108(2), 166–171.
Saxton, K. E., W. J. Rawls, J. S. Romberger, and R. I. Papendick (1986), Estimating generalized soil-water characteristics from texture, Soil Sci. Soc. Am. J., 50(4), 1031, doi:10.2136/sssaj1986.03615995005000040039x.
Schaap, M. G., and W. Bouten (1996), Modeling water retention curves of sandy soils using neural networks, Water Resour. Res., 32(10), 3033–3040, doi:10.1029/96WR02278.
Schaap, M. G., and F. J. Leij (1998), Using neural networks to predict soil water retention and soil hydraulic conductivity, Soil Tillage Res., 47(1), 37–42, doi:10.1016/S0167-1987(98)00070-1.
Schaap, M. G., F. J. Leij, and M. T. van Genuchten (2001), ROSETTA: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions, J. Hydrol., 251(3–4), 163–176, doi:10.1016/S0022-1694(01)00466-8.
Scheel, M., R. Seemann, M. Brinkmann, M. Di Michiel, A. Sheppard, B. Breidenbach, and S. Herminghaus (2008), Morphological clues to wet granular pile stability, Nat. Mater., 7(3), 189–193, doi:10.1038/nmat2117.
Scheinost, A. C., W. Sinowski, and K. Auerswald (1997), Regionalization of soil water retention curves in a highly variable soilscape, I. Developing a new pedotransfer function, Geoderma, 78(3–4), 129–143, doi:10.1016/S0016-7061(97)00046-3.
Schubert, H. (1984), Capillary forces—Modeling and application in particulate technology, Powder Technol., 37(1), 105–116, doi:10.1016/0032-5910(84)80010-8.
Schubert, H., W. Herrmann, and H. Rumpf (1975), Deformation behaviour of agglomerates under tensile stress, Powder Technol., 11(2), 121–131, doi:10.1016/0032-5910(75)80037-4.
Tekinsoy, M. A., C. Kayadelen, M. S. Keskin, and M. Söylemez (2004), An equation for predicting shear strength envelope with respect to matric suction, Comput. Geotech., 31(7), 589–593, doi:10.1016/j.compgeo.2004.08.001.
Terzaghi, K., R. Peck, and G. Mesri (1996), Soil Mechanics in Engineering Practice, John Wiley, New York.
Tuller, M., D. Or, and L. M. Dudley (1999), Adsorption and capillary condensation in porous media: Liquid retention and interfacial configurations in angular pores, Water Resour. Res., 35(7), 1949–1964, doi:10.1029/1999WR900098.
Turner, G. A., M. Balasubramanian, and L. Otten (1976), The tensile strength of moist limestone powder. Measurements by different apparatuses, Powder Technol., 15(1), 97–105, doi:10.1016/0032-5910(76)80034-4.
Tyler, S. W., and S. W. Wheatcraft (1989), Application of fractal mathematics to soil water retention estimation, Soil Sci. Soc. Am. J., 53(4), 987–996, doi:10.2136/sssaj1989.03615995005300040001x.
van Genuchten, M. T. (1980), A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44(5), 892–898.
Vanapalli, S. K., and D. G. Fredlund (2000), Comparison of different procedures to predict unsaturated soil shear strength, in Advances in Unsaturated Geotechnics, pp. 195–209, Am. Soc. of Civ. Eng., Reston, Va.
Vanapalli, S. K., D. G. Fredlund, D. E. Pufahl, and A. W. Clifton (1996), Model for the prediction of shear strength with respect to soil suction, Can. Geotech. J., 33(3), 379–392, doi:10.1139/t96-060.
Vereecken, H., J. Maes, J. Feyen, and P. Darius (1989), Estimating the soil moisture retention characteristic from texture, bulk density, and carbon content, Soil Sci., 148(6), 389–403, doi:10.1097/00010694-198912000-00001.
Vereecken, H., M. Weynants, M. Javaux, Y. Pachepsky, M. G. Schaap, and M. T. van Genuchten (2010), Using pedotransfer functions to estimate the van Genuchten–Mualem soil hydraulic properties: A review, Vadose Zone J., 9(4), 795, doi:10.2136/vzj2010.0045.
Vienken, T., and P. Dietrich (2011), Field evaluation of methods for determining hydraulic conductivity from grain size data, J. Hydrol., 400(1–2), 58–71, doi:10.1016/j.jhydrol.2011.01.022.
Wang, J.-P., E. Gallo, B. François, F. Gabrieli, and P. Lambert (2017), Capillary force and rupture of funicular liquid bridges between three spherical bodies, Powder Technol., 305, 89–98, doi:10.1016/j.powtec.2016.09.060.
Wösten, J. H. M., and M. T. van Genuchten (1988), Using texture and other soil properties to predict the unsaturated soil hydraulic functions, Soil Sci. Soc. Am. J., 52(6), 1762, doi:10.2136/sssaj1988.03615995005200060045x.
Yang, H., H. Rahardjo, E.-C. Leong, and D. G. Fredlund (2004), Factors affecting drying and wetting soil-water characteristic curves of sandy soils, Can. Geotech. J., 41(5), 908–920, doi:10.1139/t04-042.
Zhou, A., R. Huang, and D. Sheng (2016), Capillary water retention curve and shear strength of unsaturated soils, Can. Geotech. J., 53(6), 974–987, doi:10.1139/cgj-2015-0322.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.