Article (Scientific journals)
Investigation of the effect of specific interfacial area on strength of unsaturated granular materials by X-ray tomography
Wang, Ji-Peng; Lambert, Pierre; De Kock, Tim et al.
2019In Acta Geotechnica
Peer Reviewed verified by ORBi
 

Files


Full Text
36_Wang_et_al_ActaGeo_2019.pdf
Author postprint (5.31 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Sciences de l'ingénieur; Effective stress; Interface; Strength; Unsaturated granular material; X-ray tomography
Abstract :
[en] This paper studies the effect of interfacial areas (air–water interfaces and solid–water interfaces) on material strength of unsaturated granular materials. High-resolution X-ray computed tomography technique is employed to measure the interfacial areas in wet glass bead samples. The scanned 3D images are trinarized into three phases and meshed into representative volume elements (RVEs). An appropriate RVE size is selected to represent adequate local information. Due to the local heterogeneity of the material, the discretized RVEs of the scanned samples actually cover a very large range of degree of saturation and porosity. The data of RVEs present the relationship between the specific interfacial areas and degree of saturation and gives boundaries where the interfacial area of a whole sample should fall in. In parallel, suction-controlled direct shear tests have been carried out on glass beads and the material strength has been corroborated with two effective stress definitions related to the specific air–water interfacial areas and fraction of wetted solid surface, respectively. The comparisons show that the specific air–water interfacial area reaches the peak at about 25% of saturation and contributes significantly to the material strength (up to 60% of the total capillary strength). The wetted solid surface obtained from X-ray CT is also used to estimate Bishop’s coefficient χ based on the second type of effective stress definition, which shows a good agreement with the measured value. This work emphasizes the importance to include interface terms in effective stress formulations of unsaturated soils. It also suggests that the X-ray CT technique and RVE-based multiscale analysis are very valuable in the studies of multiphase geomaterials.
Disciplines :
Civil engineering
Author, co-author :
Wang, Ji-Peng
Lambert, Pierre
De Kock, Tim
Cnudde, Veerle
François, Bertrand  ;  Université de Liège - ULiège > Urban and Environmental Engineering
Language :
English
Title :
Investigation of the effect of specific interfacial area on strength of unsaturated granular materials by X-ray tomography
Publication date :
2019
Journal title :
Acta Geotechnica
ISSN :
1861-1125
eISSN :
1861-1133
Publisher :
Springer, United States - Delaware
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 11 April 2022

Statistics


Number of views
26 (2 by ULiège)
Number of downloads
67 (1 by ULiège)

Scopus citations®
 
26
Scopus citations®
without self-citations
19
OpenCitations
 
17

Bibliography


Similar publications



Contact ORBi