[en] Drug-induced diabetes mellitus is a growing problem in clinical practice. New, potent medications contribute to this problem in a population already at high risk of developing glucose disturbances because of poor lifestyle habits and high prevalence of being overweight/obese. The present review focuses on four important pharmacological classes: glucocorticoids; antipsychotics, especially second generation; antiretroviral therapies, which revolutionised the management of individuals with HIV; and immune checkpoint inhibitors, recently used for the immunotherapy of cancer. For each class, the prevalence of drug-induced diabetes will be evaluated, the most common clinical presentations will be described, the underlying mechanisms leading to hyperglycaemia will be briefly analysed, and some recommendations for appropriate monitoring and management will be proposed.
Fève, Bruno; Department of Endocrinology, CRMR PRISIS, Saint-Antoine Hospital, AP-HP, Paris, France. bruno.feve@inserm.fr ; Centre de Recherche Saint-Antoine, Institute of Cardiometabolism and Nutrition, Sorbonne University-Inserm, Paris, France. bruno.feve@inserm.fr
SCHEEN, André ; Centre Hospitalier Universitaire de Liège - CHU > > Service de diabétologie, nutrition, maladies métaboliques
Language :
English
Title :
When therapeutic drugs lead to diabetes.
Publication date :
May 2022
Journal title :
Diabetologia
ISSN :
0012-186X
eISSN :
1432-0428
Publisher :
Springer Science and Business Media Deutschland GmbH, Germany
FRM - Fondation pour la Recherche Médicale Sorbonne Université INSERM - Institut National de la Santé et de la Recherche Médicale
Funding text :
Work in the authors’ laboratories is supported by the Institut National de la Santé et de la Recherche Médicale (Inserm), Sorbonne University, and the Fondation pour la Recherche Médicale (FRM) grant number EQU201903007868 to BF.
Fathallah N, Slim R, Larif S, Hmouda H, Ben Salem C (2015) Drug-induced hyperglycaemia and diabetes. Drug Saf 38(12):1153–1168. 10.1007/s40264-015-0339-z DOI: 10.1007/s40264-015-0339-z
Liu MZ, He HY, Luo JQ et al (2018) Drug-induced hyperglycaemia and diabetes: pharmacogenomics perspectives. Arch Pharm Res 41(7):725–736. 10.1007/s12272-018-1039-x DOI: 10.1007/s12272-018-1039-x
Guber K, Pemmasani G, Malik A, Aronow WS, Yandrapalli S, Frishman WH (2021) Statins and higher diabetes mellitus risk: incidence, proposed mechanisms and clinical implications. Cardiol Rev 29(6):314–322. 10.1097/CRD.0000000000000348 DOI: 10.1097/CRD.0000000000000348
Suh S, Park MK (2017) Glucocorticoid-induced diabetes mellitus: an important but overlooked problem. Endocrinol Metab (Seoul) 32(2):180–189. 10.3803/EnM.2017.32.2.180 DOI: 10.3803/EnM.2017.32.2.180
Reynolds RM, Labad J, Sears AV et al (2012) Glucocorticoid treatment and impaired mood, memory, and metabolism in people with diabetes: the Edinburgh type 2 diabetes study. Eur J Endocrinol 166(5):861–868. 10.1530/EJE-12-004 DOI: 10.1530/EJE-12-004
Burt MG, Willenberg VM, Petersons CJ, Smith MD, Ahern MJ, Stranks SN (2012) Screening for diabetes in patients with inflammatory rheumatological disease administered long-term prednisolone: a cross-sectional study. Rheumatology (Oxford) 51(6):1112–1119. 10.1093/rheumatology/kes003 DOI: 10.1093/rheumatology/kes003
Fardet L, Fève B (2014) Systemic glucocorticoid therapy: a review of its metabolic and cardiovascular adverse events. Drugs 74(15):1731–1745. 10.1007/s40265-014-0282-9 DOI: 10.1007/s40265-014-0282-9
Burt MG, Roberts GW, Aguilar-Loza NR, Frith P, Stranks SN (2011) Continuous monitoring of circadian glycemic patterns in patients receiving prednisolone for COPD. J Clin Endocrinol Metab 96(6):1789–1796. 10.1210/jc.2010-2729 DOI: 10.1210/jc.2010-2729
Radhakutty A, Burt MG (2018) Management of endocrine disease: critical review of the evidence underlying management of glucocorticoid-induced hyperglycemia. Eur J Endocrinol 179(4):R207–R218. 10.1530/EJE-18-0315 DOI: 10.1530/EJE-18-0315
Gurwitz JH, Bohn RL, Glynn RJ, Monane M, Mogun H, Avorn J (1994) Glucocorticoids and the risk for initiation of hypoglycemic therapy. Arch Intern Med 154(1):97–101. 10.1001/archinte.1994.00420010131015 DOI: 10.1001/archinte.1994.00420010131015
Stout A, Friedly J, Standaert CJ (2019) Systemic absorption and side effects of locally injected glucocorticoids. PM R 11(4):409–419. 10.1002/pmrj.12042 DOI: 10.1002/pmrj.12042
Hansen KB, Vilsbøll T, Bagger JI, Holst JJ, Knop FK (2010) Reduced glucose tolerance and insulin resistance induced by steroid treatment, relative physical inactivity, and high-calorie diet impairs the incretin effect in healthy subjects. J Clin Endocrinol Metab 95(7):3309–3317. 10.1210/jc.2010-0119 DOI: 10.1210/jc.2010-0119
Dirlewanger M, Schneiter PH, Paquot N, Jequier E, Rey V, Tappy L (2000) Effects of glucocorticoids on hepatic sensitivity to insulin and glucagon in man. Clin Nutr 19(1):29–34. 10.1054/clnu.1999.0064 DOI: 10.1054/clnu.1999.0064
Saad MJ, Folli F, Kahn JA, Kahn CR (1993) Modulation of insulin receptor, insulin receptor substrate-1, and phosphatidylinositol 3-kinase in liver and muscle of dexamethasone-treated rats. J Clin Invest 92(4):2065–2072. 10.1172/JCI116803 DOI: 10.1172/JCI116803
Lindroos J, Husa J, Mitterer G et al (2013) Human but not mouse adipogenesis is critically dependent on LMO3. Cell Metab 18(1):62–74. 10.1016/j.cmet.2013.05.020 DOI: 10.1016/j.cmet.2013.05.020
Fardet L, Antuna-Puente B, Vatier C et al (2013) Adipokine profile in glucocorticoid-treated patients: baseline plasma leptin level predicts occurrence of lipodystrophy. Clin Endocrinol 78(1):43–51. 10.1111/j.1365-2265.2012.04348.x DOI: 10.1111/j.1365-2265.2012.04348.x
Dalle H, Garcia M, Antoine B et al (2019) Adipocyte glucocorticoid receptor deficiency promotes adipose tissue expandability and improves the metabolic profile under corticosterone exposure. Diabetes 68(2):305–317. 10.2337/db17-1577 DOI: 10.2337/db17-1577
Delaunay F, Khan A, Cintra A et al (1999) Pancreatic beta cells are important targets for the diabetogenic effects of glucocorticoids. J Clin Invest 100(8):2094–2098. 10.1172/JCI119743 DOI: 10.1172/JCI119743
Courty E, Besseiche A, Do TTH et al (2019) Adaptive beta-cell neogenesis in the adult mouse in response to glucocorticoid-induced insulin resistance. Diabetes 68(1):95–108. 10.2337/db17-1314 DOI: 10.2337/db17-1314
Kasayama S, Tanaka T, Hashimoto K, Koga M, Kawase I (2002) Efficacy of glimepiride for the treatment of diabetes occurring during glucocorticoid therapy. Diabetes Care 25(12):2359–2360. 10.2337/diacare.25.12.2359 DOI: 10.2337/diacare.25.12.2359
van Genugten RE, van Raalte DH, Muskiet MH et al (2014) Does dipeptidyl peptidase-4 inhibition prevent the diabetogenic effects of glucocorticoids in men with the metabolic syndrome ? A randomized controlled trial. Eur J Endocrinol 170(3):429–439. 10.1530/EJE-13-0610 DOI: 10.1530/EJE-13-0610
van Raalte DH, van Genugten RE, Linssen MM, Ouwens DM, Diamant M (2011) Glucagon-like peptide-1 receptor agonist treatment prevents glucocorticoid-induced glucose intolerance and islet-cell dysfunction in humans. Diabetes Care 34(2):412–417. 10.2337/dc10-1677 DOI: 10.2337/dc10-1677
Holt RIG (2019) Association between antipsychotic medication and diabetes. Curr Diab Rep 19(10):96. 10.1007/s11892-019-1220-8 DOI: 10.1007/s11892-019-1220-8
Scheen AJ, De Hert MA (2007) Abnormal glucose metabolism in patients treated with antipsychotics. Diabetes Metab 33(3):169–175. 10.1016/j.diabet.2007.01.003 DOI: 10.1016/j.diabet.2007.01.003
Barton BB, Segger F, Fischer K, Obermeier M, Musil R (2020) Update on weight-gain caused by antipsychotics: a systematic review and meta-analysis. Expert Opin Drug Saf 19(3):295–314. 10.1080/14740338.2020.1713091 DOI: 10.1080/14740338.2020.1713091
Vancampfort D, Correll CU, Galling B et al (2016) Diabtes mellitus in people with schizophrenia, bipolar disorder, and major depressive disorder: a systematic review and large scale meta-analysis. World Psychiatry 15(2):166–174. 10.1002/wps.20309 DOI: 10.1002/wps.20309
Hirsch L, Yang J, Bresee L, Jette N, Patten S, Pringsheim T (2017) Second-generation antipsychotics and metabolic side effects: a systematic review of population-based studies. Drug Saf 40(9):771–781. 10.1007/s40264-017-0543-0 DOI: 10.1007/s40264-017-0543-0
Grajales D, Ferreira V, Valverde ÁM (2019) Second-generation antipsychotics and dysregulation of glucose metabolism: beyond weight gain. Cells 8(11):1336. 10.3390/cells8111336 DOI: 10.3390/cells8111336
Polcwiartek C, Vang T, Bruhn CH, Hashemi N, Rosenzweig M, Nielsen J (2016) Diabetic ketoacidosis in patients exposed to antipsychotics: a systematic literature review and analysis of Danish adverse drug event reports. Psychopharmacology 233(21–22):3663–3672. 10.1007/s00213-016-4411-x DOI: 10.1007/s00213-016-4411-x
Singh R, Bansal Y, Medhi B, Kuhad A (2019) Antipsychotics-induced metabolic alterations: recounting the mechanistic insights, therapeutic targets and pharmacological alternatives. Eur J Pharmacol 844:231–240. 10.1016/j.ejphar.2018.12.003 DOI: 10.1016/j.ejphar.2018.12.003
American Diabetes Association; American Psychiatric Association; American Association of Clinical Endocrinologists; North American Association for the Study of Obesity. Consensus development conference on antipsychotic drugs and obesity and diabetes (2004) Diabetes Care 27(2):596–601. 10.2337/diacare.27.2.596 DOI: 10.2337/diacare.27.2.596
Chen J, Huang XF, Shao R, Chen C, Deng C (2017) Molecular mechanisms of antipsychotic drug-induced diabetes. Front Neurosci 11:643. 10.3389/fnins.2017.00643 DOI: 10.3389/fnins.2017.00643
Weston-Green K, Huang XF, Deng C (2013) Second generation antipsychotic-induced type 2 diabetes: a role of the muscarinic M3 receptor. CNS Drugs 27(12):1069–1080. 10.1007/s40263-013-0115-5 DOI: 10.1007/s40263-013-0115-5
Cernea S, Dima L, Correll CU, Manu P (2020) Pharmacological management of glucose dysregulation in patients treated with second-generation antipsychotics. Drugs 80(17):1763–1781. 10.1007/s40265-020-01393-x DOI: 10.1007/s40265-020-01393-x
Siskind D, Hahn M, Correll CU et al (2019) Glucagon-like peptide-1 receptor agonists for antipsychotic-associated cardio-metabolic risk factors: a systematic review and individual participant data meta-analysis. Diabetes Obes Metab 21(2):293–302. 10.1111/dom.13522 DOI: 10.1111/dom.13522
Lagathu C, Béréziat V, Gorwood J et al (2019) Metabolic complications affecting adipose tissue, lipid and glucose metabolism associated with HIV antiretroviral treatment. Expert Opin Drug Saf 18(9):829–840. 10.1080/14740338.2019.1644317 DOI: 10.1080/14740338.2019.1644317
Koethe JR, Lagathu C, Lake JE et al (2020) HIV and antiretroviral therapy-related fat alterations. Nat Rev Dis Primers 6(1):48. 10.1038/s41572-020-0181-1 DOI: 10.1038/s41572-020-0181-1
Capeau J, Bouteloup V, Katlama C et al (2012) ANRS CO8 APROCO-COPILOTE cohort study group. The-year diabetes incidence in 1046 HIV-infected patients started on a combination antiretroviral treatment. AIDS 26(3):303–314. 10.1097/QAD.0b013e32834e8776 DOI: 10.1097/QAD.0b013e32834e8776
Rasmussen LD, Mathiesen ER, Kronborg G, Pedersen C, Gerstoft J, Obel N (2012) Risk of diabetes mellitus in persons with and without HIV: a Danish nationwide population-based cohort study. PLoS One 7(9):e44575. 10.1371/journal.pone.0044575 DOI: 10.1371/journal.pone.0044575
Nansseu JR, Bigna JJ, Kaze AD, Noubiap JJ (2018) Incidence and risk factors for diabetes and diabetes mellitus among HIV-infected adults on antiretroviral therapy: a systematic review and meta-analysis. Epidemiology 29(3):431–441. 10.1097/EDE.0000000000000815 DOI: 10.1097/EDE.0000000000000815
Karamchand S, Leisegang R, Schomaker M et al (2016) Risk factors for incident diabetes in a cohort taking first-line nonnucleoside reverse transcriptase inhibitor-based antiretroviral therapy. Medicine (Baltimore) 95(9):e2844. 10.1097/MD.0000000000002844 DOI: 10.1097/MD.0000000000002844
Caron-Debarle M, Lagathu C, Boccara F, Vigouroux C, Capeau J (2010) HIV-associated lipodystrophy: from fat injury to premature aging. Trends Mol Med 16(5):218–229. 10.1016/j.molmed.2010.03.002 DOI: 10.1016/j.molmed.2010.03.002
Lagathu C, Cossarizza A, Béréziat V, Nasi M, Capeau J, Pinti M (2017) Basic science and pathogenesis of ageing with HIV: potential mechanisms and biomarkers. AIDS Suppl 2:S105–S119. 10.1097/QAD.0000000000001441 DOI: 10.1097/QAD.0000000000001441
Payne BA, Gardner K, Chinnery PF (2015) Mitochondrial DNA mutations in ageing and disease: implications for HIV? Antivir Ther 20(2):109–120. 10.3851/IMP2824 DOI: 10.3851/IMP2824
Lake JE, Stanley TL, Apovian CM et al (2017) Practical review of recognition and management of obesity and lipohypertrophy in human immunodeficiency virus infection. Clin Infect Dis 64(10):1422–1429. 10.1093/cid/cix178 DOI: 10.1093/cid/cix178
Torriani M, Srinivasa S, Fitch KV et al (2016) Dysfunctional subcutaneous fat with reduced Dicer and brown adipose tissue gene expression in HIV-infected patients. J Clin Endocrinol Metab 101(3):1225–1234. 10.1210/jc.2015-3993 DOI: 10.1210/jc.2015-3993
Vigouroux C, Guénantin AC, Vatier C et al (2018) Lipodystrophic syndromes due to LMNA mutations: recent developments on molecular aspects, pathophysiological hypotheses and therapeutic perspectives. Nucleus 9(1):235–248. 10.1080/19491034.2018.1456217 DOI: 10.1080/19491034.2018.1456217
Díaz-Delfín J, del Mar Gutiérrez M, Gallego-Escuredo JM et al (2011) Effects of nevirapine and efavirenz on human adipocyte differentiation, gene expression, and release of adipokines and cytokines. Antivir Res 91(2):112–119. 10.1016/j.antiviral.2011.04.018 DOI: 10.1016/j.antiviral.2011.04.018
Gorwood J, Bourgeois C, Pourcher V et al (2020) The integrase inhibitors dolutegravir and raltegravir exert pro-adipogenic and pro-fibrotic effects and induce insulin resistance in human/simian adipose tissue and human adipocytes. Clin Infect Dis 71(10):e549–e560. 10.1093/cid/ciaa259 DOI: 10.1093/cid/ciaa259
Zhang S, Carper MJ, Lei X, Cade WT, Yarasheski KE, Ramanadham S (2009) Protease inhibitors used in the treatment of HIV+ induce beta-cell apoptosis via the mitochondrial pathway and compromise insulin secretion. Am J Physiol Endocrinol Metab 296(4):E925–E935. 10.1152/ajpendo.90445.2008 DOI: 10.1152/ajpendo.90445.2008
Willig AL, Overton ET (2016) Metabolic complications and glucose metabolism in HIV infection: a review of the evidence. Curr HIV/AIDS Rep 13(5):289–296. 10.1007/s11904-016-0330-z DOI: 10.1007/s11904-016-0330-z
Monroe AK, Glesby MJ, Brown TT (2015) Diagnosing and managing diabetes in HIV-infected patients: current concepts. Clin Infect Dis 60(3):453–462. 10.1093/cid/ciu779 DOI: 10.1093/cid/ciu779
Fitch K, Abbara S, Lee H et al (2012) Effects of lifestyle modification and metformin on atherosclerotic indices among HIV-infected patients with the metabolic syndrome. AIDS 26(5):587–597. 10.1097/QAD.0b013e32834f33cc DOI: 10.1097/QAD.0b013e32834f33cc
Davies MJ, D’Alessio DA, Fradkin J et al (2018) Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European diabetes Association for the Study of diabetes (EASD). Diabetologia 61(12):2461–2498. 10.1007/s00125-018-4729-5 DOI: 10.1007/s00125-018-4729-5
de Filette J, Andreescu CE, Cools F, Bravenboer B, Velkeniers B (2019) A systematic review and meta-analysis of endocrine-related adverse events associated with immune check point inhibitors. Horm Metab Res 51(3):145–156. 10.1055/a-0843-3366 DOI: 10.1055/a-0843-3366
de Filette JMK, Pen JJ, Decoster L et al (2019) Immune checkpoint inhibitors and type 1 diabetes mellitus: case report and systematic review. Eur J Endocrinol 181(3):363–374. 10.1530/EJE-19-0291 DOI: 10.1530/EJE-19-0291
Perdigoto AL, Quandt Z, Anderson M, Herold KC (2019) Checkpoint inhibitor-induced insulin-dependent diabetes: an emerging syndrome. Lancet Diabetes Endocrinol 7(6):421–423. 10.1016/S2213-8587(19)30072-5 DOI: 10.1016/S2213-8587(19)30072-5
Wright JJ, Powers AC, Johnson DB (2021) Endocrine toxicities of immune checkpoint inhibitors. Nat Rev Endocrinol 17(7):389–399. 10.1038/s41574-021-00484-3 DOI: 10.1038/s41574-021-00484-3
Lu J, Yang J, Liang Y, Meng H, Zhao J, Zhang X (2019) Incidence of immune checkpoint inhibitor-associated diabetes: a meta-analysis of randomized controlled studies. Front Pharmacol 10:1453. 10.3389/fphar.2019.01453 eCollection 2019 DOI: 10.3389/fphar.2019.01453
Liu J, Zhou H, Zhang Y et al (2020) Reporting of immune checkpoint inhibitor therapy-associated diabetes, 2015-2019. Diabetes Care 43(7):e79–e80. 10.2337/dc20-0459 DOI: 10.2337/dc20-0459
Zheng Z, Liu Y, Yang J et al (2021) Diabetes mellitus induced by immune checkpoint inhibitors. Diabetes Metab Res Rev 37:e3366. 10.1002/dmrr.3366 DOI: 10.1002/dmrr.3366
Wright JJ, Salem JE, Johnson DB et al (2018) Increased reporting of immune checkpoint inhibitor-associated diabetes. Diabetes Care 41(12):e150–e151. 10.2337/dc18-1465 DOI: 10.2337/dc18-1465
Zagouras A, Patil PD, Yogi-Morren D, Pennell NA (2020) Cases from the immune-related adverse event tumor board: diagnosis and management of the immune checkpoint blockade induced diabetes. Oncologist 25(11):921–924. 10.1634/theoncologist.2019-0806 DOI: 10.1634/theoncologist.2019-0806
Youssef N, Noureldein M, Daoud G, Eid AA (2021) Immune checkpoint inhibitors and diabetes: mechanisms and predictors. Diabetes Metab 47(3):101193. 10.1016/j.diabet.2020.09.003 DOI: 10.1016/j.diabet.2020.09.003
George J, Bajaj D, Sankaramangalam K et al (2019) Incidence of pancreatitis with the use of immune checkpoint inhibitors (ICI) in advanced cancers: a systematic review and meta-analysis. Pancreatology 19(4):587–594. 10.1016/j.pan.2019.04.015 DOI: 10.1016/j.pan.2019.04.015
Quandt Z, Young A, Anderson M (2020) Immune checkpoint inhibitor diabetes mellitus: a novel form of autoimmune diabetes. Clin Exp Immunol 200(2):131–140. 10.1111/cei.13424 DOI: 10.1111/cei.13424
Yoneda S, Imagawa A, Hosokawa Y et al (2019) T-lymphocyte infiltration to islets in the pancreas of a patient who developed type 1 diabetes after administration of immune checkpoint inhibitors. Diabetes Care 42(7):e116–e118. 10.2337/dc18-2518 DOI: 10.2337/dc18-2518