Chemistry (all); Biochemistry, Genetics and Molecular Biology (all); Physics and Astronomy (all); General Physics and Astronomy; General Biochemistry, Genetics and Molecular Biology; General Chemistry
Abstract :
[en] In the open ocean, calcium carbonates are mainly found in two mineral forms. Calcite, the least soluble, is widespread at the seafloor, while aragonite, the more soluble, is rarely preserved in marine sediments. Despite its greater solubility, research has shown that aragonite, whose contribution to global pelagic calcification could be at par with that of calcite, is able to reach the deep-ocean. If large quantities of aragonite settle and dissolve at the seafloor, this represents a large source of alkalinity that buffers the deep ocean and favours the preservation of less soluble calcite, acting as a deep-sea, carbonate version of galvanization. Here, we investigate the role of aragonite dissolution on the early diagenesis of calcite-rich sediments using a novel 3D, micrometric-scale reactive-transport model combined with 3D, X-ray tomography structures of natural aragonite and calcite shells. Results highlight the important role of diffusive transport in benthic calcium carbonate dissolution, in agreement with recent work. We show that, locally, aragonite fluxes to the seafloor could be sufficient to suppress calcite dissolution in the top layer of the seabed, possibly causing calcite recrystallization. As aragonite producers are particularly vulnerable to ocean acidification, the proposed galvanizing effect of aragonite could be weakened in the future, and calcite dissolution at the sediment-water interface will have to cover a greater share of CO2 neutralization.
Research Center/Unit :
SPHERES - ULiège
Disciplines :
Earth sciences & physical geography
Author, co-author :
Sulpis, Olivier ; UU - Utrecht University > Department of Earth Sciences,
Agrawal, Priyanka; UU - Utrecht University > Department of Earth Sciences
Wolthers, Mariette ; UU - Utrecht University > Department of Earth Sciences
SEdiment REsponse to NATural and Anthropogenic carbon cycle perturbations (SERENATA)
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique ERC - European Research Council
Funding number :
J.0123.19; 819588
Funding text :
O.S. and J.J.M. were supported by the Dutch Ministry of Education via the Netherlands Earth System Science Centre (NESSC). The research work of P.A. and M. Wolthers is part of the Industrial Partnership Program i32 Computational Sciences for Energy Research that is carried out under an agreement between Shell and the Netherlands Organization for Scientific Research (NWO). M. Wolthers has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. [819588]). G.M. is a Research Associate with the Belgian Fund for Scientific Research F.R.S.-FNRS. Financial support for the work of G.M. was provided by the Belgian Fund for Scientific Research—F.R.S.-FNRS (project SERENATA, grant CDR J.0123.19).
Archer, D. E. An atlas of the distribution of calcium carbonate in sediments of the deep sea. Glob. Biogeochem. Cycles 10, 159–174 (1996).
Archer, D. et al. Atmospheric lifetime of fossil fuel carbon dioxide. Annu. Rev. Earth Planet. Sci. 37, 117–134 (2009).
Milliman, J. D. Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state. Glob. Biogeochem. Cycles 7, 927–957 (1993).
Smith, S. V. & Mackenzie, F. T. The role of CaCO3 reactions in the contemporary oceanic CO2 cycle. Aquat. Geochem. 22, 153–175 (2016).
Mucci, A. The solubility of calcite and aragonite in seawater at various salinities, temperatures and one atmosphere total pressure. Am. J. Sci. 283, 780–799 (1983).
Sulpis, O., Jeansson, E., Dinauer, A., Lauvset, S. K. & Middelburg, J. J. Calcium carbonate dissolution patterns in the ocean. Nat. Geosci. 14, 423–428 (2021).
Peijnenburg, K. et al. The origin and diversification of pteropods precede past perturbations in the Earth’s carbon cycle. Proc. Natl Acad. Sci. USA 117, 25609–25617 (2020).
Fabry, V. J. Shell growth rates of pteropod and heteropod molluscs and aragonite production in the open ocean: implications for the marine carbonate system. J. Mar. Res. 48, 209–222 (1990).
Buitenhuis, E. T., Le Quéré, C., Bednaršek, N. & Schiebel, R. Large contribution of pteropods to shallow CaCO3 export. Glob. Biogeochem. Cycles 33, 458–468 (2019).
Bednaršek, N., Možina, J., Vogt, M., O’Brien, C. & Tarling, G. A. The global distribution of pteropods and their contribution to carbonate and carbon biomass in the modern ocean. Earth Syst. Sci. Data 4, 167–186 (2012).
Woosley, R. J., Millero, F. J. & Grosell, M. The solubility of fish-produced high magnesium calcite in seawater. J. Geophys. Res. 117, C04018 (2012).
Wilson, R. W. et al. Contribution of fish to the marine inorganic carbon cycle. Science 323, 359–362 (2009).
Berner, R. A., Berner, E. K. & Keir, R. S. Aragonite dissolution on the Bermuda Pedestal: its depth and geochemical significance. Earth Planet. Sci. Lett. 30, 169–178 (1976).
Agegian, C. R., Mackenzie, F. T., Tribble, J. S. & Sabine, C. L. Carbonate production and flux from a mid-depth ecosystem, Penguin Bank, Hawaii. In Biogeochemical Cycling and Fluxes between the Deep Euphotic Zone and other Oceanic Realms (ed. Agegian, C. R.) 5–32 (Undersea Research Program, National Oceanic and Atmospheric Administration, 1988).
Gangstø, R. et al. Modeling the marine aragonite cycle: changes under rising carbon dioxide and its role in shallow water CaCO3 dissolution. Biogeosciences 5, 1057–1072 (2008).
Dunne, J. P. et al. GFDL’s ESM2 global coupled climate–carbon earth system models. Part II: Carbon system formulation and baseline simulation characteristics*. J. Clim. 26, 2247–2267 (2013).
Stock, C. A. et al. Ocean Biogeochemistry in GFDL’s Earth System Model 4.1 and Its response to increasing atmospheric CO2. J. Adv. Model. Earth Syst. 12, e2019MS002043 (2020).
Aumont, O., Ethé, C., Tagliabue, A., Bopp, L. & Gehlen, M. PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies. Geosci. Model Dev. 8, 2465–2513 (2015).
Moore, J. K., Lindsay, K., Doney, S. C., Long, M. C. & Misumi, K. Marine ecosystem dynamics and biogeochemical cycling in the community earth system model [CESM1(BGC)]: comparison of the 1990s with the 2090s under the RCP4.5 and RCP8.5 Scenarios. J. Clim. 26, 9291–9312 (2013).
Watanabe, S. et al. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev. 4, 845–872 (2011).
Ilyina, T. et al. Global ocean biogeochemistry model HAMOCC: model architecture and performance as component of the MPI‐Earth system model in different CMIP5 experimental realizations. J. Adv. Model. Earth Syst. 5, 287–315 (2013).
van Dijk, I., de Nooijer, L. J., Hart, M. B. & Reichart, G. J. The long-term impact of magnesium in seawater on foraminiferal mineralogy: mechanism and consequences. Glob. Biogeochem. Cycles 30, 438–446 (2016).
Roberts, J. M. et al. Cold-water corals in an era of rapid global change: are these the deep ocean’s most vulnerable ecosystems? in The Cnidaria, Past, Present and Future (eds Goffredo, S., Dubinsky, Z.) 593–606 (Springer International Publishing Ag, 2016).
Byrne, R. H., Acker, J. G., Betzer, P. R., Feely, R. A. & Cates, M. A. Water column dissolution of aragonite in the Pacific Ocean. Nature 312, 321–326 (1984).
Oakes, R. L., Peck, V. L., Manno, C. & Bralower, T. J. Degradation of internal organic matter is the main control on Pteropod shell dissolution after death. Glob. Biogeochem. Cycles 33, 749–760 (2019).
Millero, F. J. Thermodynamics of the carbon dioxide system in the oceans. Geochim. Cosmochim. Acta 59, 661–677 (1995).
Berner, R. A. Activity coefficients of bicarbonate, carbonate and calcium ions in sea water. Geochim. Cosmochim. Acta 29, 947–965 (1965).
Berger, W. H. Deep-sea carbonate: pteropod distribution and the aragonite compensation depth. Deep Sea Res. 25, 447–452 (1978).
Sulpis, O. et al. Current CaCO3 dissolution at the seafloor caused by anthropogenic CO2. Proc. Natl Acad. Sci. USA 115, 11700–11705 (2018).
Dong, S. et al. Aragonite dissolution kinetics and calcite/aragonite ratios in sinking and suspended particles in the North Pacific. Earth Planet. Sci. Lett. 515, 1–12 (2019).
Adkins, J. F., Naviaux, J. D., Subhas, A. V., Dong, S. & Berelson, W. M. The dissolution rate of CaCO3 in the ocean. Annu. Rev. Mar. Sci. https://doi.org/10.1146/annurev-marine-041720-092514 (2020).
Boeuf, D. et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. Proc. Natl Acad. Sci. USA 116, 11824–11832 (2019).
Boudraeu, B. P. A method-of-lines code for carbon and nutrient diagenesis in aquatic sediments. Comput. Geosci. 22, 479–496 (1996).
Munhoven, G. Glacial–interglacial rain ratio changes: Implications for atmospheric and ocean–sediment interaction. Deep Sea Res. Part II: Top. Stud. Oceanogr. 54, 722–746 (2007).
Rabouille, C. & Gaillard, J.-F. Towards the EDGE: early diagenetic global explanation. A model depicting the early diagenesis of organic matter, O2, NO3, Mn, and PO4. Geochim. Cosmochim. Acta 55, 2511–2525 (1991).
Peterson, M. N. A. Calcite: rates of dissolution in a vertical profile in the central Pacific. Science 154, 1542–1544 (1966).
Keir, R. S. The dissolution kinetics of biogenic calcium carbonates in seawater. Geochim. Cosmochim. Acta 44, 241–252 (1980).
Walter, L. M. & Morse, J. W. The dissolution kinetics of shallow marine carbonates in seawater: a laboratory study. Geochim. Cosmochim. Acta 49, 1503–1513 (1985).
Subhas, A. V. et al. A novel determination of calcite dissolution kinetics in seawater. Geochim. Cosmochim. Acta 170, 51–68 (2015).
Colombani, J. The alkaline dissolution rate of calcite. J. Phys. Chem. Lett. 7, 2376–2380 (2016).
Sulpis, O., Lix, C., Mucci, A. & Boudreau, B. P. Calcite dissolution kinetics at the sediment–water interface in natural seawater. Mar. Chem. 195, 70–83 (2017).
Agrawal, P. et al. The contribution of hydrodynamic processes to calcite dissolution rates and rate spectra. Geochim. Cosmochim. Acta 307, 338–350 (2021).
Subhas, A. V. et al. The dissolution behavior of biogenic calcites in seawater and a possible role for magnesium and organic carbon. Mar. Chem. 205, 100–112 (2018).
Brunauer, S., Emmett, P. H. & Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938).
Noji, T. T. et al. Clearance of picoplankton-sized partides and formation of rapidly sinking aggregates by the pteropod, Limacina reiroversa. J. Plankton Res. 19, 863–875 (1997).
Cochran, J. K. The flux of 226Ra from deep-sea sediments. Earth Planet. Sci. Lett. 49, 381–392 (1979).
Boudreau, B. P. & Guinasso, N. L. The influence of a diffusive boundary layer on accretion, dissolution, and diagenesis at the sea floor. in The Dynamic Environment of the Ocean Floor (eds Fanning, K. A. & Manheim, F. T.) 115–145 (Lexington Books, 1982).
Boudreau, B. P., Sulpis, O. & Mucci, A. Control of CaCO3 dissolution at the deep seafloor and its consequences. Geochim. Cosmochim. Acta 268, 90–106 (2020).
Collen, J. D. & Burgess, C. J. Calcite dissolution, overgrowth and recrystallization in the benthic foraminiferal genus Notorotalia. J. Paleontol. 53, 1343–1353 (1979).
Pearson, P. N., Evans, S. L. & Evans, J. Effect of diagenetic recrystallization on the strength of planktonic foraminifer tests under compression. J. Micropalaeontol. 34, 59–64 (2015).
Sun, X. & Turchyn, A. V. Significant contribution of authigenic carbonate to marine carbon burial. Nat. Geosci. 7, 201–204 (2014).
Lein, A. Y. U. Authigenic carbonate formation in the ocean. Lithol. Miner. Resour. 39, 1–30 (2004).
Cherns, L. & Wright, V. P. Quantifying the impacts of early diagenetic aragonite dissolution on the fossil record. Palaios 24, 756–771 (2009).
Foote, M., Crampton, J. S., Beu, A. G. & Nelson, C. S. Aragonite bias, and lack of bias, in the fossil record: lithological, environmental, and ecological controls. Paleobiology 41, 245–265 (2015).
James, N. P., Bone, Y. & Kyser, T. K. Where has all the aragonite gone? Mineralogy of Holocene neritic cool-water carbonates, Southern Australia. J. Sediment. Res. 75, 454–463 (2005).
Boudreau, B. P., Middelburg, J. J. & Luo, Y. The role of calcification in carbonate compensation. Nat. Geosci. 11, 894–900 (2018).
Emerson, S. & Bender, M. Carbon fluxes at the sediment-water interface of the deep-sea: calcium carbonate preservation. J. Mar. Res. 39, 139–162 (1981).
Harris, R. P. Zooplankton grazing on the coccolithophore Emiliania huxleyi and its role in inorganic carbon flux. Mar. Biol. 119, 431–439 (1994).
Orr, J. C. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686 (2005).
Mekkes, L. et al. Pteropods make thinner shells in the upwelling region of the California Current Ecosystem. Sci. Rep. 11, 1731 (2021).
Gazeau, F. et al. Impact of elevated CO2 on shellfish calcification. Geophys. Res. Lett. 34, L07603 (2007).
Bednaršek, N., Tarling, G. A., Bakker, D. C. E., Fielding, S. & Feely, R. A. Dissolution dominating calcification process in polar pteropods close to the point of aragonite undersaturation. PLoS ONE 9, e109183 (2014).
Parkhurst, D. & Appelo, C. Description of Input and Examples for PHREEQC Version 3—A Computer Program for Speciation, Batch-reaction, One-dimensional Transport, and Inverse Geochemical Calculations U.S. Geol. Survey Water Resources Investigations Report https://pubs.usgs.gov/tm/06/a43/ (2013).
Dunne, J. P., Hales, B. & Toggweiler, J. R. Global calcite cycling constrained by sediment preservation controls. Glob. Biogeochem. Cycles 26, GB3023 (2012).
Plummer, N. L., & Busenberg, E. The solubilities of calcite, aragonite and vaterite in CO2–H2O solutions between 0 and 90 °C, and an evaluation of the aqueous model for the system CaCO3–CO2–H2O. Geochim. Cosmochim. Acta 46, 1011–1040 (1982).
Plummer, L. N., Wigley, T. M. L. & Parkhurst, D. L. The kinetics of calcite dissolution in CO2–water systems at 5° to 60 °C and 0.0 to 1.0 atm CO2. Am. J. Sci. 278, 179–216 (1978).
Busenberg, E. & Plummer, L. A comparative study of the dissolution and crystal growth kinetics of calcite and aragonite. in Studies in Diagenesis, Vol. 1578 (ed. Mumpton, F. A.) 139–168 (US Geological Survey Bulletin, 1986).
Naviaux, J. D. et al. Calcite dissolution rates in seawater: Lab vs. in-situ measurements and inhibition by organic matter. Mar. Chem. 215, 103684 (2019).
Berner, R. A. Solubility of calcite and aragonite in seawater at atmospheric pressure and 34.5% salinity. Am. J. Sci. 276, 713–730 (1976).
Todd, R. Smaller foraminifera. In Geology of Saipan, Mariana Islands. Part 3, Paleontology, Vols. 280-H 265–320 (ed. US Geological Survey Professional Paper) (US Geological Survey, 1957).
Parker, W. K., Jones, T. R. & Brady, H. B. On the nomenclature of the Foraminifera. Part X. (continued). The species enumerated by D’Orbigny in the ‘Annales des Sciences Naturelles,’ 1826, vol. vii.-III. The species illustrated by models. Ann. Mag. Nat. Hist. 16, 15–41 (1865).
Banner, F. T. & Blow, W. H. The classification and stratigraphical distribution of the Globigerinaceae. Palaeontology 2, 1–27 (1959).
Oakes, R. L. & Sessa, J. A. Determining how biotic and abiotic variables affect the shell condition and parameters of Heliconoides inflatus pteropods from a sediment trap in the Cariaco Basin. Biogeosciences 17, 1975–1990 (2020).
Schmidt, D. N., Thierstein, H. R., Bollmann, J. & Schiebel, R. Abiotic forcing of plankton evolution in the Cenozoic. Science 303, 207–210 (2004).
Sayles, F. L., Martin, W. R., Chase, Z. & Anderson, R. F. Benthic remineralization and burial of biogenic SiO2, CaCO3, organic carbon, and detrital material in the Southern Ocean along a transect at 170 West. Deep Sea Res. II 48, 4323–4383 (2001).