du Jardin, P. (2015). Plant biostimulants: definition, concept, main categories and regulation. Sci. Hortic. 196: 3-14.
Calvo, P., Nelson, L., and Kloepper, J.W. (2014). Agricultural uses of plant biostimulants. Plant Soil 383 (1-2): 3-41.
Yakhin, O.I., Lubyanov, A.A., Yakhin, I.A., and Brown, P.H. (2017). Biostimulants in plant science: a global perspective. Front. Plant Sci. 7.
Luttge, U. (2012). Modularity and emergence: biology's challenge in understanding life. Plant Biol. 14 (6): 865-871.
Battacharyya, D., Babgohari, M.Z., Rathor, P., and Prithiviraj, B. (2015). Seaweed extracts as biostimulants in horticulture. Sci. Hortic. 196: 39-48.
Canellas, L.P., Dantas, D.J., Aguiar, N.O. et al. (2011). Probing the hormonal activity of fractionated molecular humic components in tomato auxin mutants. Ann. Appl. Biol. 159 (2): 202-211.
Colla, G., Nardi, S., Cardarelli, M. et al. (2015). Protein hydrolysates as biostimulants in horticulture. Sci. Hortic. 196: 28-38.
Waadt, R., Hsu, P.K., and Schroeder, J.I. (2015). Abscisic acid and other plant hormones: methods to visualize distribution and signaling. BioEssays 37 (12): 1338-1349.
Araya, T., von Wiren, N., and Takahashi, H. (2016). CLE peptide signaling and nitrogen interactions in plant root development. Plant Mol. Biol. 91 (6): 607-615.
Rubio, V., Bustos, R., Irigoyen, M.L. et al. (2009). Plant hormones and nutrient signaling. Plant Mol. Biol. 69 (4): 361-373.
Krouk, G. (2016). Hormones and nitrate: a two-way connection. Plant Mol. Biol. 91 (6): 599-606.
Krouk, G., Ruffel, S., Gutierrez, R.A. et al. (2011). A framework integrating plant growth with hormones and nutrients. Trends Plant Sci. 16 (4): 178-182.
Aryee, A.N. and Boye, J.I. (2015). Current and emerging trends in the formulation and manufacture of nutraceuticals and functional food products. In: Nutraceutical and Functional Food Processing Technology (ed. J.I. Boye), 1-64. Wiley.
Rice-Evans, C., Miller, N., and Paganga, G. (1997). Antioxidant properties of phenolic compounds. Trends Plant Sci. 2 (4): 152-159.
Harvey, A.L. (2014). Natural product-based libraries. In: Plant Chemical Biology (eds. D. Audenaert and P. Overvoorde), 64-71. Wiley.
Kaur, S. and Das, M. (2011). Functional foods: an overview. Food Sci. Biotechnol. 20 (4): 861-875.
Azmir, J., Zaidul, I.S.M., Rahman, M.M. et al. (2013). Techniques for extraction of bioactive compounds from plant materials: a review. J. Food Eng. 117 (4): 426-436.
Ignat, I., Volf, I., and Popa, V.I. (2011). A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem. 126 (4): 1821-1835.
Lattanzio, V., Kroon, P.A., Linsalata, V., and Cardinali, A. (2009). Globe artichoke: a functional food and source of nutraceutical ingredients. J. Funct. Foods 1 (2): 131-144.
Sasidharan, S., Chen, Y., Saravanan, D. et al. (2011). Extraction, isolation and characterization of bioactive compounds from plants' extracts. Afr. J. Tradit. Complem. 8 (1): 1-10.
Xuan, W., Murphy, E., Beeckman, T. et al. (2013). Synthetic molecules: helping to unravel plant signal transduction. J. Chem. Biol. 6 (2): 43-50.
De Rybel, B., Audenaert, D., Xuan, W. et al. (2012). A role for the root cap in root branching revealed by the non-auxin probe naxillin. Nat. Chem. Biol. 8 (9): 798-805.
Dmytryk, A. and Chojnacka, K. (2018). Algae as fertilizers, biostimulants, and regulators of plant growth. In: Algae Biomass: Characteristics and Applications: Towards Algae-Based Products (eds. K. Chojnacka, P.P. Wieczorek, G. Schroeder and I. Michalak), 115-122. Cham: Springer International Publishing.
Khan, W., Rayirath, U.P., Subramanian, S. et al. (2009). Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul. 28 (4): 386-399.
Marinho-Soriano, E., Fonseca, P.C., Carneiro, M.A.A., and Moreira, W.S.C. (2006). Seasonal variation in the chemical composition of two tropical seaweeds. Bioresour. Technol. 97 (18): 2402-2406.
Sharma, S.H.S., Lyons, G., McRoberts, C. et al. (2012). Biostimulant activity of brown seaweed species from Strangford Lough: compositional analyses of polysaccharides and bioassay of extracts using mung bean (Vigno mungo L.) and pak choi (Brassica rapa chinensis L.). J. Appl. Phycol. 24 (5): 1081-1091.
Rioux, L.E., Turgeon, S.L., and Beaulieu, M. (2007). Characterization of polysaccharides extracted from brown seaweeds. Carbohydr. Polym. 69 (3): 530-537.
Canellas, L.P., Dobbss, L.B., Oliveira, A.L. et al. (2012). Chemical properties of humic matter as related to induction of plant lateral roots. Eur. J. Soil Sci. 63 (3): 315-324.
Rose, M.T., Patti, A.F., Little, K.R. et al. (2014). Chapter two - A meta-analysis and review of plant-growth response to humic substances: practical implications for agriculture. In: Advances in Agronomy, vol. 124 (ed. D.L. Sparks), 37-89. Academic Press.
Ertani, A., Cavani, L., Pizzeghello, D. et al. (2009). Biostimulant activity of two protein hydrolyzates in the growth and nitrogen metabolism of maize seedlings. J. Plant Nutr. Soil Sci. 172 (2): 237-244.
Tang, C.H., Peng, J., Zhen, D.W., and Chen, Z. (2009). Physicochemical and antioxidant properties of buckwheat (Fagopyrum esculentum Moench) protein hydrolysates. Food Chem. 115 (2): 672-678.
Chalamaiah, M., Dinesh Kumar, B., Hemalatha, R., and Jyothirmayi, T. (2012). Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review. Food Chem. 135 (4): 3020-3038.
Ertani, A., Schiavon, M., Muscolo, A., and Nardi, S. (2013). Alfalfa plant-derived biostimulant stimulate short-term growth of salt stressed Zea mays L. plants. Plant Soil 364 (1): 145-158.
Paterson, I. and Anderson, E.A. (2005). The renaissance of natural products as drug candidates. Science 310 (5747): 451-453.
Harvey, A.L., Edrada-Ebel, R., and Quinn, R.J. (2015). The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discovery 14: 111.
Paddon, C.J. and Keasling, J.D. (2014). Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat. Rev. Microbiol. 12: 355.
Zhu, J.M. (2010). Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 31 (17): 4639-4656.
Pepinsky, R.B., Lepage, D.J., Gill, A. et al. (2001). Improved pharmacokinetic properties of a polyethylene glycol-modified form of interferon-beta-1a with preserved in vitro bioactivity. J. Pharmacol. Exp. Ther. 297 (3): 1059-1066.
Richardson, R. (2014). Compound collections. In: Plant Chemical Biology (eds. D. Audenaert and P. Overvoorde), 21-39. Wiley.
Burns, A.R., Kwok, T.C.Y., Howard, A. et al. (2006). High-throughput screening of small molecules for bioactivity and target identification in Caenorhabditis elegans. Nat. Protoc. 1: 1906.
Gendron, J.M., Haque, A., Gendron, N. et al. (2008). Chemical genetic dissection of brassinosteroidethylene interaction. Mol. Plant 1 (2): 368-379.
Kerchev, P., Mühlenbock, P., Denecker, J. et al. (2015). Activation of auxin signalling counteracts photorespiratory H2O2-dependent cell death. Plant Cell Environ. 38 (2): 253-265.
Hu, Y.M., Callebert, P., Vandemoortel, I. et al. (2014). TR-DB: an open-access database of compounds affecting the ethylene-induced triple response in Arabidopsis. Plant Physiol. Biochem. 75: 128-137.
An, F.W. and Perez, J.R. (2014). Assay design for high-throughput screening. In: Plant Chemical Biology (eds. D. Audenaert and P. Overvoorde), 75-91. Wiley.
Rouphael, Y., Spíchal, L., Panzarová, K. et al. (2018). High-throughput plant phenotyping for developing novel biostimulants: from lab to field or from field to lab? Front. Plant Sci. 9: 1197.
De Diego, N., Furst, T., Humplik, J.F. et al. (2017). An automated method for high-throughput screening of Arabidopsis Rosette growth in multi-well plates and its validation in stress conditions. Front. Plant Sci. 8: 1702.
Rayorath, P., Jithesh, M.N., Farid, A. et al. (2008). Rapid bioassays to evaluate the plant growth promoting activity of Ascophyllum nodosum (L.) Le Jol. using a model plant, Arabidopsis thaliana (L.) Heynh. J. Appl. Phycol. 20 (4): 423-429.
Arioli, T., Mattner, S.W., and Winberg, P.C. (2015). Applications of seaweed extracts in Australian agriculture: past, present and future. J. Appl. Phycol. 27 (5): 2007-2015.
Petrozza, A., Santaniello, A., Summerer, S. et al. (2014). Physiological responses to Megafol® treatments in tomato plants under drought stress: a phenomic and molecular approach. Sci. Hortic 174 (Supplement C): 185-192.
Robert, S., Raikhel, N.V., and Hicks, G.R. (2009). Powerful partners: Arabidopsis and chemical genomics. Arabidopsis Book 7: e0109.
Hager, A., Langowska, M., and Robert, S. (2014). The use of chemical biology to study plant cellular processes. In: Plant Chemical Biology (eds. D. Audenaert and P. Overvoorde), 218-231. Wiley.
Pichyangkura, R. and Chadchawan, S. (2015). Biostimulant activity of chitosan in horticulture. Sci. Hortic. 196: 49-65.
Tanou, G., Ziogas, V., and Molassiotis, A. (2017). Foliar nutrition, biostimulants and prime-like dynamics in fruit tree physiology: new insights on an old topic. Front. Plant Sci. 8: 75.
Kumaraswamy, R.V., Kumari, S., Choudhary, R.C. et al. (2018). Salicylic acid functionalized chitosan nanoparticle: a sustainable biostimulant for plant. Int. J. Biol. Macromol. 123: 59-69.
Fryer, M.E. and Collins, C.D. (2003). Model intercomparison for the uptake of organic chemicals by plants. Environ. Sci. Technol. 37 (8): 1617-1624.
Surpin, M., Rojas-Pierce, M., Carter, C. et al. (2005). The power of chemical genomics to study the link between endomembrane system components and the gravitropic response. Proc. Natl. Acad. Sci. U.S.A. 102 (13): 4902-1907.
Rojas-Pierce, M., Titapiwatanakun, B., Sohn, E.J. et al. (2007). Arabidopsis P-Glycoprotein19 participates in the inhibition of gravitropism by gravacin. Chem. Biol. 14 (12): 1366-1376.
Colla, G., Rouphael, Y., Di Mattia, E. et al. (2015). Co-inoculation of Glomus intraradices and Trichoderma atroviride acts as a biostimulant to promote growth, yield and nutrient uptake of vegetable crops. J. Sci. Food Agric. 95 (8): 1706-1715.
Rouphael, Y., Cardarelli, M., Bonini, P., and Colla, G. (2017). Synergistic action of a microbial-based biostimulant and a plant-derived protein hydrolysate enhances Lettuce tolerance to alkalinity and salinity. Front. Plant Sci. 8: 131.
Fiorentino, N., Ventorino, V., Woo, S.L. et al. (2018). Trichoderma-based biostimulants modulate rhizosphere microbial populations and improve N uptake efficiency, yield, and nutritional quality of leafy vegetables. Front. Plant Sci. 9: 743.
Keswani, C., Mishra, S., Sarma, B.K. et al. (2014). Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Appl. Microbiol. Biotechnol. 98 (2): 533-544.
Chowdhury, S.P., Hartmann, A., Gao, X.W., and Borriss, R. (2015). Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 - a review. Front. Microbiol. 6: 780.
Craig, A., Sidaway, J., Holmes, E. et al. (2006). Systems toxicology: integrated genomic, proteomic and metabonomic analysis of methapyrilene induced hepatotoxicity in the rat. J. Proteome Res. 5(7): 1586-1601.
Boeing, S., Williamson, L., Encheva, V. et al. (2016). Multiomic analysis of the UV-induced DNA damage response. Cell Rep. 15 (7): 1597-1610.
Gao, B., Chi, L., Mahbub, R. et al. (2017). Multi-omics reveals that lead exposure disturbs gut microbiome development, key metabolites, and metabolic pathways. Chem. Res. Toxicol. 30 (4): 996-1005.
Norris, J.L., Farrow, M.A., Gutierrez, D.B. et al. (2017). Integrated, high-throughput, multiomics platform enables data-driven construction of cellular responses and reveals global drug mechanisms of action. J. Proteome Res. 16 (3): 1364-1375.
Lucini, L., Rouphael, Y., Cardarelli, M. et al. (2015). The effect of a plant-derived biostimulant on metabolic profiling and crop performance of lettuce grown under saline conditions. Sci. Hortic. 182 (Supplement C): 124-133.
Bulgari, R., Morgutti, S., Cocetta, G. et al. (2017). Evaluation of borage extracts as potential biostimulant using a phenomic, agronomic, physiological, and biochemical approach. Front. Plant Sci. 8: 935.
Colla, G., Rouphael, Y., Canaguier, R. et al. (2014). Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Front. Plant Sci. 5: 448.
Schiavon, M., Pizzeghello, D., Muscolo, A. et al. (2010). High molecular size humic substances enhance phenylpropanoid metabolism in maize (Zea mays L.). J. Chem. Ecol. 36 (6): 662-669.
Tilman, D., Cassman, K.G., Matson, P.A. et al. (2002). Agricultural sustainability and intensive production practices. Nature 418 (6898): 671-677.
Fageria, N.K., Baligar, V.C., and Li, Y.C. (2008). The role of nutrient efficient plants in improving crop yields in the twenty first century. J. Plant Nutr. 31 (6): 1121-1157.
Ussiri, D.A.N. and Lal, R. (2013). Soil Emission of Nitrous Oxide and its Mitigation, 1e. Springer.
Weih, M., Asplund, L., and Bergkvist, G. (2011). Assessment of nutrient use in annual and perennial crops: a functional concept for analyzing nitrogen use efficiency. Plant Soil 339 (1-2): 513-520.
Canellas, L.P., Olivares, F.L., Aguiar, N.O. et al. (2015). Humic and fulvic acids as biostimulants in horticulture. Sci. Hortic. 196: 15-27.
Ghasemi, S., Khoshgoftarmanesh, A.H., Hadadzadeh, H., and Jafari, M. (2012). Synthesis of iron-amino acid chelates and evaluation of their efficacy as iron source and growth stimulator for tomato in nutrient solution culture. J. Plant Growth Regul. 31 (4): 498-508.
Nardi, S., Pizzeghello, D., Schiavon, M., and Ertani, A. (2016). Plant biostimulants: physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. Sci. Agric. 73 (1): 18-23.
Chen, T.H.H. and Murata, N. (2011). Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ. 34 (1): 1-20.
Masclaux-Daubresse, C., Daniel-Vedele, F., Dechorgnat, J. et al. (2010). Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann. Bot. 105 (7): 1141-1157.
Bourguignon, D. (2016). Closing the Loop-New Circular Economy Package. European Parliamentary Research Service.
Colla, G., Rouphael, Y., Lucini, L. et al. (2016). Protein hydrolysate-based biostimulants: origin, biological activity and application methods. Acta Hortic. 1148: 27-33.
Hu, H.H. and Xiong, L.Z. (2014). Genetic engineering and breeding of drought-resistant crops. Annu. Rev. Plant Biol. 65: 715-741.
Skirycz, A., Vandenbroucke, K., Clauw, P. et al. (2011). Survival and growth of Arabidopsis plants given limited water are not equal. Nat. Biotechnol. 29 (3): 212-214.
Skirycz, A., Claeys, H., De Bodt, S. et al. (2011). Pause-and-stop: the effects of osmotic stress on cell proliferation during early leaf development in Arabidopsis and a role for ethylene signaling in cell cycle arrest. Plant Cell 23 (5): 1876-1888.
Skirycz, A. and Inze, D. (2010). More from less: plant growth under limited water. Curr. Opin. Biotechnol. 21 (2): 197-203.
Blum, A. (2009). Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crop Res. 112 (2-3): 119-123.
Jakab, G., Ton, J., Flors, V. et al. (2005). Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses. Plant Physiol. 139 (1): 267-274.
Hilker, M., Schwachtje, J., Baier, M. et al. (2016). Priming and memory of stress responses in organisms lacking a nervous system. Biol. Rev. 91 (4): 1118-1133.
Conrath, U., Beckers, G.J.M., Flors, V. et al. (2006). Priming: getting ready for battle. Mol. Plant Microbe. In. 19 (10): 1062-1071.
Frioni, T., Sabbatini, P., Tombesi, S. et al. (2018). Effects of a biostimulant derived from the brown seaweed Ascophyllum nodosum on ripening dynamics and fruit quality of grapevines. Sci. Hortic. 232: 97-106.
Lola-Luz, T., Hennequart, F., and Gaffney, M. (2014). Effect on yield, total phenolic, total flavonoid and total isothiocyanate content of two broccoli cultivars (Brassica oleraceae var italica) following the application of a commercial brown seaweed extract (Ascophyllum nodosum). Agric. Food Sci. 23 (1): 28-37.
Lola-Luz, T., Hennequart, F., and Gaffney, M. (2014). Effect on health promoting phytochemicals following seaweed application, in potato and onion crops grown under a low input agricultural system. Sci. Hortic. 170: 224-227.
Lola-Luz, T., Hennequart, F., and Gaffney, M. (2013). Enhancement of phenolic and flavonoid compounds in cabbage (Brassica oleraceae) following application of commercial seaweed extracts of the brown seaweed (Ascophyllum nodosum). Agric. Food Sci. 22 (2): 288-295.
Billard, V., Etienne, P., Jannin, L. et al. (2014). two biostimulants derived from algae or humic acid induce similar responses in the mineral content and gene expression of winter oilseed rape (Brassica napus L.). J. Plant Growth Regul. 33 (2): 305-316.
Colla, G. and Rouphael, Y. (2015). Biostimulants in horticulture Preface. Sci. Hortic. 196: 1-2.
Walsh, T.A. (2014). Prospects and challenges for translating emerging insights in plant chemical biology into new agrochemicals. In: Plant Chemical Biology (eds. D. Audenaert and P. Overvoorde), 249-262. Wiley.
La Torre, A., Battaglia, V., and Caradonia, F. (2016). An overview of the current plant biostimulant legislations in different European Member States. J. Sci. Food Agric. 96 (3): 727-734.
Xu, L. and Geelen, D. (2018). Developing biostimulants from agro-food and industrial by-products. Front. Plant Sci. 9: 1567.
Abou Chehade, L., Al Chami, Z., De Pascali, S.A. et al. (2017). Biostimulants from food processing by-products: agronomic, quality and metabolic impacts on organic tomato (Solanum lycopersicum L.). J. Sci. Food Agric. 98 (4): 1426-1436.
Olivares, F.L., Aguiar, N.O., Rosa, R.C.C., and Canellas, L.P. (2015). Substrate biofortification in combination with foliar sprays of plant growth promoting bacteria and humic substances boosts production of organic tomatoes. Sci. Hortic. 183: 100-108.
Zhang, C.H. and Kovacs, J.M. (2012). The application of small unmanned aerial systems for precision agriculture: a review. Precis. Agric. 13 (6): 693-712.
Robert, P.C. (2002). Precision agriculture: a challenge for crop nutrition management. Plant Soil 247 (1): 143-149.
Rains, G.C., Olson, D.M., and Lewis, W.J. (2011). Redirecting technology to support sustainable farm management practices. Agric. Syst. 104 (4): 365-370.
Therond, O., Duru, M., Roger-Estrade, J., and Richard, G. (2017). A new analytical framework of farming system and agriculture model diversities. A. review. Agron. Sustainable Dev. 37 (3): 21.
Duhan, J.S., Kumar, R., Kumar, N. et al. (2017). Nanotechnology: the new perspective in precision agriculture. Biotechnol. Rep. 15: 11-23.
Turner, A.P.F. (2000). Biosensors - sense and sensitivity. Science 290 (5495): 1315-1317.
Pecha, J., Fürst, T., Kolomazník, K. et al. (2012). Protein biostimulant foliar uptake modeling: the impact of climatic conditions. AlChE J. 58 (7): 2010-2019.