Andersson, J., Borg-Karlson, A.-K., Vongvanich, N., and Wiklund, C. (2007). Male sex pheromone release and female mate choice in a butterfly. J. Exp. Biol. 210, 964-970. doi: 10.1242/jeb.02726
Bacquet, P. M. B., Brattstrom, O., Wang, H.-L., Allen, C. E., Lofstedt, C., Brakefield, P. M., et al. (2015). Selection on male sex pheromone composition contributes to butterfly reproductive isolation. Proc. R. Soc. B Biol. Sci. 282:20142734. doi: 10.1098/rspb.2014.2734
Birch, M. C., Poppy, G. M., and Baker, T. C. (1990). Scents and eversible scent structures of male moths. Annu. Rev. Entomol. 35, 25-54. doi: 10.1146/annurev.en.35.010190.000325
Boughman, J. W. (2001). Divergent sexual selection enhaces reproductive isolation in sticklebacks. Nature 411, 944-948. doi: 10.1038/35082064
Brakefield, P. M., Beldade, P., and Zwaan, B. J. (2009). The African butterfly Bicyclus anynana: a model for evolutionary genetics and evolutionary developmental biology. Cold Spring Harb. Protoc. 4, 1-10. doi: 10.1101/pdb.emo122
Byrne, K. J., Gore, W. E., Pearce, G. T., and Silverstein, R. M. (1975). Parapak-Q collection of airborne organic compounds serving as models for insect pheromones. J. Chem. Ecol. 1, 1-7
Clearwater, J. R. (1972). Chemistry and function of a pheromone produced by the male of the southern armyworm Pseudaletia separata. J. Insect Physiol. 18, 781-789. doi: 10.1016/0022-1910(72)90202-8
Costanzo, K., and Monteiro, A. (2007). The use of chemical and visual cues in female choice in the butterfly Bicyclus anynana. Proc. R. Soc. B Biol. Sci. 274, 845-851. doi: 10.1098/rspb.2006.3729
Cross, J. H., Byler, R. C., Cassidy, R. F Jr., Silverstein, R. M., Greenblatt, R. E., Burkholder, W. E., et al. (1976). Parapak-Q collection of phermone components and isolation of (Z)-and (E)-14-methyl-8-hexadecenal, sex pheromone components, from females of four species of Trogoderma (Coleoptera: Dermestidae). J. Chem. Ecol. 2, 457-468
Darragh, K., Vanjari, S., Mann, F., Gonzalez-Rojas, M. F., Morrison, C. R., Salazar, C., et al. (2017). Male sex pheromone components in Heliconius butterflies released by the androconia affect female choice. PeerJ. 5:e3953. doi: 10.7717/peerj.3953
Darwin, C. (1859). On the Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life. London: John Murray
Dion, E., Monteiro, A., and Yew, J. Y. (2016). Phenotypic plasticity in sex pheromone production in Bicyclus anynana butterflies. Sci. Rep. 6, 1-13. doi: 10.1038/srep39002
Dion, E., Pui, L. X., and Monteiro, A. (2017). Early-exposure to new sex pheromone blend alters mate preference in female butterflies and in their offspring. bioRxiv [Preprint]. doi: 10.1101/214635
Foster, S. P., Anderson, K. G., and Casas, J. (2018). The dynamics of pheromone gland synthesis and release: a paradigm shift for understanding sex pheromone quantity in female moths. J. Chem. Ecol. 44:525-533. doi: 10.1007/s10886-018-0963-z
Greenfield, M. D. (1981). Moth sex pheromones: an evolutionary perspective. Florida Entomol. 64, 4-17. doi: 10.2307/3494597
Groot, A. T., Dekker, T., and Heckel, D. G. (2016). The genetic basis of pheromone evolution in moths. Annu. Rev. Entomol. 61, 99-117. doi: 10.1146/annurev-ento-010715-023638
Groot, A. T., Horovitz, J. L., Hamilton, J., Santangelo, R. G., Schal, C., and Gould, F. (2006). Experimental evidence for interspecific directional selection on moth pheromone communication. Proc. Natl. Acad. Sci. U.S.A. 103, 5858-5863. doi: 10.1073/pnas.0508609103
Heuskin, S., Vanderplanck, M., Bacquet, P., Holveck, M.-J., Kaltenpoth, M., Engl, T., et al. (2014). The composition of cuticular compounds indicates body parts, sex and age in the model butterfly Bicyclus anynana (Lepidoptera). Front. Ecol. Evol. 2:37. doi: 10.3389/fevo.2014.00037
Hill, A. S., Carde, R., Kido, H., and Roelofs, W. L. (1975). Sex pheromone of the orange tortrix moth, Argyrotaenia citrana (Lepidoptera: Tortricidae). J. Chem. Ecol. 1, 215-224. doi: 10.1007/BF00987870
Hirai, K. (1980). Male scent emitted by armyworms, Pseudaletia unipuncta and P. separata (Lepidoptera: Noctuidae). Appl. Entomol. Zool. 15, 310-315. doi: 10.1303/aez.15.310
Holveck, M.-J., Gauthier, A.-L., and Nieberding, C. M. (2015). Dense, small and male-biased cages exacerbate male-male competition and reduce female choosiness in Bicyclus anynana. Anim. Behav. 104, 229-245. doi: 10.1016/j.anbehav.2015.03.025
Johansson, B. G., and Jones, T. M. (2007). The role of chemical communication in mate choice. Biol. Rev. 82, 265-289. doi: 10.1111/j.1469-185X.2007.00009.x
Joron, M., and Brakefield, P. M. (2003). Captivity masks inbreeding effects on male mating success in butterflies. Nature 424, 191-194. doi: 10.1038/nature01713
Karlson, P., and Lüscher, M. (1959). "Pheromones": a new term for a class of biologically active substances. Nature 183, 55-56
Kuwahara, Y. (1979). Scent scales substances of male Pieris melete Menetries (Pieridae: Lepidoptera). Appl. Entomol. Zool. 14, 350-355. doi: 10.1303/aez.14.350
Miller, C. W., and Svensson, E. I. (2014). Sexual selection in complex environments. Annu. Rev. Entomol. 59, 427-445. doi: 10.1146/annurev-ento-011613-162044
Nieberding, C. M., de Vos, H., Schneider, M. V., Lassance, J. M., Estramil, N., Andersson, J., et al. (2008). The male sex pheromone of the butterfly Bicyclus anynana: towards an evolutionary analysis. PLoS ONE 3:e2751. doi: 10.1371/journal.pone.0002751
Nieberding, C. M., Fischer, K., Saastamoinen, M., Allen, C. E., Wallin, E. A., Hedenström, E., et al. (2012). Cracking the olfactory code of a butterfly: the scent of ageing. Ecol. Lett. 15, 415-424. doi: 10.1111/j.1461-0248.2012.01748.x
Nieberding, C. M., and Holveck, M.-J. (2017). Laboratory social environment biases mating outcome: a first quantitative synthesis in a butterfly. Behav. Ecol. Sociobiol. 71:117. doi: 10.1007/s00265-017-2346-9
Nieberding, C. M., and Holveck, M.-J. (2018). Commentary on Kehl et al: "Young male mating success is associated with sperm number but not with male sex pheromone titres." Front. Ecol. Evol. 15:18. doi: 10.1186/s12983-018-0256-y
Nieberding, C. M., San Martin, G., Saenko, S., Allen, C. E., Brakefield, P. M., and Visser, B. (2018). Sexual selection contributes to partial restoration of phenotypic robustness in a butterfly. Sci. Rep. 8:14315. doi: 10.1038/s41598-018-32132-8
Panhuis, T. M., Butlin, R., Zuk, M., and Tregenza, T. (2001). Sexual selection and speciation. Trends Ecol. Evol. 16, 364-371. doi: 10.1016/S0169-5347(01)02160-7
Percy, J. E., Gardiner, E. J., and Weatherston, J. (1971). Studies of physiologically active arthropod secretions 6. Evidence for a sex pheromone in female Orgyia leucostigma (Lepidoptera: Lymantriidae). Can. Entomol. 103: 706-712
Phelan, P. L., and Baker, T. C. (1987). Evolution of male pheromones in moths: reproductive isolation through sexual selection? Science 235, 205-207. doi: 10.1126/science.235.4785.205
Prudic, K. L., Jeon, C., Cao, H., and Monteiro, A. (2011). Developmental plasticity in sexual roles of butterfly species drives mutual sexual ornamentation. Science 331, 73-75. doi: 10.1126/science.1197114
R Development Core Team (2016). R: A Language and Environment for Statistical Computing. Available online at: http://www.r-project.org/
Rodríguez, R. L., Boughman, J. W., Gray, D. A., Hebets, E. A., Höbel, G., and Symes, L. B. (2013). Diversification under sexual selection: the relative roles of mate preference strength and the degree of divergence in mate preferences. Ecol. Lett. 16, 964-974. doi: 10.1111/ele.12142
Roelofs, W., Hill, A., and Carde, R. (1975). Sex pheromone components of the redbanded leafroller, Argyrotaenia velutinana (Lepidoptera: Tortricidae). J. Chem. Ecol. 1, 83-89. doi: 10.1007/BF00987721
San Martin, G., Bacquet, P., and Nieberding, C. M. (2011). Mate choice and sexual selection in a model butterfly species, Bicyclus anynana: state of the art. Proc. Neth. Entomol. Soc. 22, 9-22. Available online at: https://www.nev.nl/pages/publicaties/proceedings/nummers/22/9-22.pdf
Sanders, C. J., and Weatherston, J. (1976). Sex-pheromone of Eastern spruce budworm (Lepidoptera: Tortricidae)-optimum blend of trans-11-tetradecenal and cis-11-tetradecenal. Can. Entomol. 108, 1285-1290
Sappington, T. W., and Taylor, O. R. (1990). Genetic sources of pheromone variation in Colias eurytheme butterflies. J. Chem. Ecol. 16, 2755-2770. doi: 10.1007/BF00988084
Smadja, C., and Butlin, R. K. (2009). On the scent of speciation: the chemosensory system and its role in premating isolation. Heredity 102, 77-97. doi: 10.1038/hdy.2008.55
Toth, M., and Buser, H. R. (1992). Simple method for collecting volatile compounds from single insects and other point sources for gas-chromatographic analysis. J. Chromatogr. 598, 303-308
Umbers, K. D. L., Symonds, M. R. E., and Kokko, H. (2015). The mothematics of female pheromone signaling: strategies for aging virgins. Am. Nat. 185, 417-432. doi: 10.1086/679614
van Bergen, E., Brakefield, P. M., Heuskin, S., Zwaan, B. J., and Nieberding, C. M. (2013). The scent of inbreeding: a male sex pheromone betrays inbred males. Proc. R. Soc. B Biol. Sci. 280, 20130102-20130102. doi: 10.1098/rspb.2013.0102
Visser, B., Dublon, I. A. N., Heuskin, S., Laval, F., Bacquet, P. M. B., Lognay, G., et al. (2018). Common practice tissue extraction in solvent does not reflect actual emission of a sex pheromone during courtship in a butterfly. bioRxiv [Preprint]. doi: 10.1101/270462
Wallace, A. R. (1892). Note on Sexual Selection (S459: 1892), ed C. H. Smith. Available online at: http://people.wku.edu/charles.smith/wallace/S459.htm
Westerman, E. L., Chirathivat, N., Schyling, E., and Monteiro, A. (2014). Mate preference for a phenotypically plastic trait is learned, and may facilitate preference-phenotype matching. Evolution 68, 1661-1670. doi: 10.1111/evo.12381
Westerman, E. L., Hodgins-davis, A., Dinwiddie, A., and Monteiro, A. (2012). Biased learning affects mate choice in a butterfly. Proc. Natl. Acad. Sci. U.S.A. 109, 10948-10953. doi: 10.1073/pnas.1118378109
Wyatt, T. D. (2014). Pheromones and Animal Behaviour: Chemical Signals and Signatures. 2nd Edn. Cambridge: Cambridge Univ Press