[en] Thermal comfort in cities is an influential factor for citizens’ wellbeing and life quality. Urban microclimate studies have gained popularity following increasing urbanization trends and global climate change in recent years. Urban fabric and morphology in traditional cities represent a unique pattern both spatially and climatically. However, few studies have investigated traditional cities’ urban thermal comfort conditions. Therefore, this study aimed to assess the thermal comfort in different subspaces of Algiers Casbah’s historic urban fabric, which falls in the hot Mediterranean climate (Csa). This research evaluated the human thermal sensation by applying the physiological equivalent temperature (PET) index. The methodology used was a mixed approach, including field measurements, calculations, and a survey questionnaire. The results indicate the presence of a high-stress level during the measurement periods, and notable differences between the subspaces in January (ΔPETMax.Jan = 3.7 °C) and August (ΔPETMax.Aug = 2.2 °C). The highest discomfort was recorded in spaces with collapsed buildings, especially during the hot hours of the day. The findings also highlight a strong impact of the sky view factor on the mean radiant temperature (Tmrt) and the physiological equivalent temperature (PET). The study discusses recommendations and ways to improve the design of outdoor spaces and relieve heat stress in the streets of traditional cities. Finally, this work helps urban managers and heritage conservators in urban rehabilitation policies concerning outdoor microclimate improvement.
Research Center/Unit :
Sustainable Building Design Lab
Disciplines :
Architecture
Author, co-author :
Arrar, Fawzi Hicham ; Université de Liège - ULiège > Urban and Environmental Engineering
Kaoula, Dalel
Matallah, Mohamed Elhadi
Abdessemed-Foufa, Amina
Taleghani, Mohammad
Attia, Shady ; Université de Liège - ULiège > Urban and Environmental Engineering
Language :
English
Title :
Quantification of Outdoor Thermal Comfort Levels under Sea Breeze in the Historical City Fabric: The Case of Algiers Casbah
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Georgescu, M.; Morefield, P.E.; Bierwagen, B.G.; Weaver, C.P. Urban adaptation can roll back warming of emerging megapolitan regions. Proc. Natl. Acad. Sci. USA 2014, 111, 2909–2914. [CrossRef] [PubMed]
Wang, Y.; Chan, A.; Lau, G.N.; Li, Q.; Yang, Y.; Yim, S.H.L. Effects of urbanization and global climate change on regional climate in the Pearl River Delta and thermal comfort implications. Int. J. Climatol. 2019, 39, 2984–2997. [CrossRef]
World Health Organization. Urbanization and health. Bull. World Health Organ. 2010, 88, 245–246. [CrossRef]
McMichael, A.J.; Lindgren, E. Climate change: Present and future risks to health, and necessary responses: Review: Climate change and health. J. Intern. Med. 2011, 270, 401–413. [CrossRef]
Hein, L.; Metzger, M.J.; Moreno, A. Potential impacts of climate change on tourism; a case study for Spain. Curr. Opin. Environ. Sustain. 2009, 1, 170–178. [CrossRef]
Morris, K.I.; Chan, A.; Morris, K.J.K.; Ooi, M.C.G.; Oozeer, M.Y.; Abakr, Y.A.; Nadzir, M.S.M.; Mohammed, I.Y.; Al-Qrimli, H.F. Impact of urbanization level on the interactions of urban area, the urban climate, and human thermal comfort. Appl. Geogr. 2017, 79, 50–72. [CrossRef]
Emmanuel, R. Thermal comfort implications of urbanization in a warm-humid city: The Colombo Metropolitan Region (CMR), Sri Lanka. Build. Environ. 2005, 40, 1591–1601. [CrossRef]
Mahmoud, S.H.; Gan, T.Y. Long-term impact of rapid urbanization on urban climate and human thermal comfort in hot-arid environment. Build. Environ. 2018, 142, 83–100. [CrossRef]
United Nations Development Program. Sustainable Development Goals. United Nations, 2015. Available online: https://www.undp.org/content/undp/en/home/sustainable-development-goals.html (accessed on 4 March 2022).
Jin, H.; Liu, S.; Kang, J. Gender differences in thermal comfort on pedestrian streets in cold and transitional seasons in severe cold regions in China. Build. Environ. 2020, 168, 106488. [CrossRef]
Nikolopoulou, M. Outdoor Comfort. In Environmental Diversity in Architecture; Spon Press: London, UK, 2004; pp. 101–120.
Jamei, E.; Rajagopalan, P.; Seyedmahmoudian, M.; Jamei, Y. Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort. Renew. Sustain. Energy Rev. 2016, 54, 1002–1017. [CrossRef]
Krüger, E.L.; Minella, F.O.; Rasia, F. Impact of urban geometry on outdoor thermal comfort and air quality from field measurements in Curitiba, Brazil. Build. Environ. 2011, 46, 621–634. [CrossRef]
Sharmin, T.; Steemers, K.; Matzarakis, A. Microclimatic modelling in assessing the impact of urban geometry on urban thermal environment. Sustain. Cities Soc. 2017, 34, 293–308. [CrossRef]
Santamouris, M. Energy and Climate in the Urban Built Environment, 1st ed.; Routledge: London, UK, 2013; ISBN 978-1-134-25790-4. Available online: https://www.taylorfrancis.com/books/9781134257904. (accessed on 24 February 2022).
Rodríguez Algeciras, J.A.; Gómez Consuegra, L.; Matzarakis, A. Spatial-temporal study on the effects of urban street configura-tions on human thermal comfort in the world heritage city of Camagüey-Cuba. Build. Environ. 2016, 101, 85–101. [CrossRef]
Russo, A.; Cirella, G. Modern Compact Cities: How Much Greenery Do We Need? Int. J. Environ. Res. Public. Health 2018, 15, 2180. [CrossRef] [PubMed]
de Roo, G.; Miller, D. Compact Cities and Sustainable Urban Development: A Critical Assessment of Policies and Plans from an International Perspective; Routledge: London, UK, 2020; ISBN 978-1-138-73052-6.
Givoni, B. Climate Considerations in Building and Urban Design; Wiley: Hoboken, NJ, USA, 1998.
Johansson, E. Influence of urban geometry on outdoor thermal comfort in a hot dry climate: A study in Fez, Morocco. Build. Environ. 2006, 41, 1326–1338. [CrossRef]
Johansson, E.; Emmanuel, R. The influence of urban design on outdoor thermal comfort in the hot, humid city of Colombo, Sri Lanka. Int. J. Biometeorol. 2006, 51, 119–133. [CrossRef] [PubMed]
Ratti, C.; Baker, N.; Steemers, K. Energy consumption and urban texture. Energy Build. 2005, 37, 762–776. [CrossRef]
Bourbia, F.; Boucheriba, F. Impact of street design on urban microclimate for semi arid climate (Constantine). Renew. Energy 2010, 35, 343–347. [CrossRef]
Thorsson, S.; Lindberg, F.; Björklund, J.; Holmer, B.; Rayner, D. Potential changes in outdoor thermal comfort conditions in Gothenburg, Sweden due to climate change: The influence of urban geometry. Int. J. Climatol. 2011, 31, 324–335. [CrossRef]
Salat, S. Les Villes et les Formes: Sur l’Urbanisme Durable; Hermann: Paris, France, 2011.
Taleghani, M.; Kleerekoper, L.; Tenpierik, M.; van den Dobbelsteen, A. Outdoor thermal comfort within five different urban forms in The Netherlands. Build. Environ. 2015, 83, 65–78. [CrossRef]
Ahmadi Venhari, A.; Tenpierik, M.; Taleghani, M. The role of sky view factor and urban street greenery in human thermal comfort and heat stress in a desert climate. J. Arid Environ. 2019, 166, 68–76. [CrossRef]
He, X.; Miao, S.; Shen, S.; Li, J.; Zhang, B.; Zhang, Z.; Chen, X. Influence of sky view factor on outdoor thermal environment and physiological equivalent temperature. Int. J. Biometeorol. 2015, 59, 285–297. [CrossRef] [PubMed]
Lai, D.; Liu, W.; Gan, T.; Liu, K.; Chen, Q. A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. Sci. Total Environ. 2019, 661, 337–353. [CrossRef]
Matallah, M.E.; Alkama, D.; Ahriz, A.; Attia, S. Assessment of the Outdoor Thermal Comfort in Oases Settlements. Atmosphere 2020, 11, 185. [CrossRef]
Roshan, G.; Moghbel, M.; Attia, S. Evaluating the wind cooling potential on outdoor thermal comfort in selected Iranian climate types. J. Therm. Biol. 2020, 92, 102660. [CrossRef] [PubMed]
Belpoliti, V.; Altan, H.; Alsebai, H.; Melahfci, O. Shaping the microclimate: CFD-assisted design optimization to enhance the outdoor comfort of a recreational complex in the UAE. Procedia Manuf. 2020, 44, 84–91. [CrossRef]
Dhingra, M.; Chattopadhyay, S. Advancing smartness of traditional settlements-case analysis of Indian and Arab old cities. Int. J. Sustain. Built Environ. 2016, 5, 549–563. [CrossRef]
Ben Salem, S.; Lahmar, C.; Simon, M.; Szilágyi, K. Green System Development in the Medinas of Tunis and Marrakesh—Green Heritage and Urban Livability. Earth 2021, 2, 809–825. [CrossRef]
Kiet, A. Arab Culture and Urban Form. Focus 2011, 8. [CrossRef]
Berkani, Y. Urban Morphology and Pedestrian Movement of Traditional Marketplace in Casbah Algiers; Teknologi Malaysia: Johor Bahru, Malaysia, 2013.
Alsayyad, N. From vernacularism to globalism: The temporal reality of traditional settlements. Tradit. Dwell. Settl. Rev. 1995, 7, 13–24.
Ali-Toudert, F.; Mayer, H. Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Build. Environ. 2006, 41, 94–108. [CrossRef]
Ali-Toudert, F.; Djenane, M.; Bensalem, R.; Mayer, H. Outdoor thermal comfort in the old desert city of Beni-Isguen, Algeria. Clim. Res. 2005, 28, 243–256. [CrossRef]
Johansson, E.; Grundström, K.; Rosenlund, H. Street canyon microclimate in traditional and modern neighbourhoods in a hot dry climate—a case study in Fez, Morocco. In Proceedings of the 18th International Conference on Passive and Low Energy Architecture (PLEA), Hong Kong, China, 10–12 December 2018.
Achour-Younsi, S.; Kharrat, F. Outdoor Thermal Comfort: Impact of the Geometry of an Urban Street Canyon in a Mediterranean Subtropical Climate—Case Study Tunis, Tunisia. Procedia Soc. Behav. Sci. 2016, 216, 689–700. [CrossRef]
Elnabawi, M.H.; Hamza, N.; Dudek, S. Numerical modelling evaluation for the microclimate of an outdoor urban form in Cairo, Egypt. HBRC J. 2015, 11, 246–251. [CrossRef]
Elnabawi, M.H.; Neveen, H.; Dudek, S. Use and evaluation of the envi-met model for two different urban forms in Cairo, Egypt: Measurements and model simulations 2013. In Proceedings of the 13th Conference of International Building Performance Simulation Association, Chambery, France, 25–28 August 2013.
Matallah, M.E.; Alkama, D.; Teller, J.; Ahriz, A.; Attia, S. Quantification of the Outdoor Thermal Comfort within Different Oases Urban Fabrics. Sustainability 2021, 13, 3051. [CrossRef]
Lucchi, E.; D’Alonzo, V.; Exner, D.; Zambelli, P.; Garegnani, G. A Density-Based Spatial Cluster Analysis Supporting The Building Stock Analysis In Historical Towns. In Proceedings of the Building Simulation, Rome, Italy, 2–4 September 2019; pp. 3831–3838. Available online: http://www.ibpsa.org/proceedings/BS2019/BS2019_210346.pdf (accessed on 4 March 2022).
Benchekroun, M.; Chergui, S.; Ruggiero, F.; Di Turi, S. Indoor Microclimate Conditions and the Impact of Transformations on Hygrothermal Comfort in the Old Ottoman Houses in Algiers. Int. J. Archit. Herit. 2020, 14, 1296–1319. [CrossRef]
Cortesão, J.; Alves, B. Alternative (bioclimatic) urban design for compact urban fabrics. In Proceedings of the CITTA 3rd Annual Conference on Planning Research Bringing City Form Back Into Planning, Porto, Portugal, 14 May 2010.
Rosso, F.; Golasi, I.; Castaldo, V.L.; Piselli, C.; Pisello, A.L.; Salata, F.; Ferrero, M.; Cotana, F.; de Lieto Vollaro, A. On the impact of innovative materials on outdoor thermal comfort of pedestrians in historical urban canyons. Renew. Energy 2018, 118, 825–839. [CrossRef]
Makropoulou, M. Microclimate Improvement of Inner-City Urban Areas in a Mediterranean Coastal City. Sustainability 2017, 9, 882. [CrossRef]
Castaldo, V.L.; Pisello, A.L.; Pigliautile, I.; Piselli, C.; Cotana, F. Microclimate and air quality investigation in historic hilly urban areas: Experimental and numerical investigation in central Italy. Sustain. Cities Soc. 2017, 33, 27–44. [CrossRef]
Andreou, E.; Axarli, K. Investigation of urban canyon microclimate in traditional and contemporary environment. Experimental investigation and parametric analysis. Renew. Energy 2012, 43, 354–363. [CrossRef]
Labdaoui, K.; Mazouz, S.; Reiter, S.; Teller, J. Thermal perception in outdoor urban spaces under the Mediterranean climate of Annaba, Algeria. Urban Clim. 2021, 39, 100970. [CrossRef]
Sharifi, E.; Sivam, A.; Boland, J. Spatial and Activity Preferences During Heat Stress Conditions in Adelaide: Towards Increased Adaptation Capacity of the Built Environment. Procedia Eng. 2017, 180, 955–965. [CrossRef]
Tseliou, A.; Tsiros, I.X.; Lykoudis, S.; Nikolopoulou, M. An evaluation of three biometeorological indices for human thermal comfort in urban outdoor areas under real climatic conditions. Build. Environ. 2010, 45, 1346–1352. [CrossRef]
Tsitoura, M.; Tsoutsos, T.; Daras, T. Evaluation of comfort conditions in urban open spaces. Application in the island of Crete. Energy Convers. Manag. 2014, 86, 250–258. [CrossRef]
Salata, F.; Golasi, I.; de Lieto Vollaro, R.; de Lieto Vollaro, A. Outdoor thermal comfort in the Mediterranean area. A transversal study in Rome, Italy. Build. Environ. 2016, 96, 46–61. [CrossRef]
Nikolopoulou, M.; Lykoudis, S. Use of outdoor spaces and microclimate in a Mediterranean urban area. Build. Environ. 2007, 42, 3691–3707. [CrossRef]
Andrade, H.; Alcoforado, M.-J.; Oliveira, S. Perception of temperature and wind by users of public outdoor spaces: Relationships with weather parameters and personal characteristics. Int. J. Biometeorol. 2011, 55, 665–680. [CrossRef]
Shooshtarian, S.; Rajagopalan, P. Study of thermal satisfaction in an Australian educational precinct. Build. Environ. 2017, 123, 119–132. [CrossRef]
Kenawy, I.; ElKadi, H. Diversity and Thermal Comfort in Outdoor Places. Int. J. Divers. Organ. Communities Nations Annu. Rev. 2011, 11, 237–248. [CrossRef]
Canan, F.; Golasi, I.; Falasca, S.; Salata, F. Outdoor thermal perception and comfort conditions in the Köppen-Geiger climate category BSk. One-year field survey and measurement campaign in Konya, Turkey. Sci. Total Environ. 2020, 738, 140295. [CrossRef]
Abdessemed-Foufa, A. Le Manuel de Réhabilitation Comme Outil de Conservation dans le cadre du Plan Permanent de Sauvegarde de la Casbah d’Alger; RehabiMed: Barcelona, Spain, 2011.
Arrar, H.F.; Abdessemed Foufa, A.; Kaoula, D. Comparative study of the influence of traditional walls with different typologies and constructive techniques on the energy performance of the traditional dwellings of the Casbah of Algiers. In Solutions for Sustainable Development; Szita Tóthné, K., Jármai, K., Voith, K., Eds.; CRC Press: Boca Raton, FL, USA, 2019; pp. 187–195. ISBN 978-0-367-82403-7. Available online: https://www.taylorfrancis.com/books/9781000759440/chapters/10.1201/9780367824037-24 (accessed on 4 March 2022).
Haedo, D. Topographie et histoire générale d’Alger, la vie à Alger au seizième siècle. Alger. In Alger Livre Editions; Collection Histoire: Paris, France, 2004.
Semahi, S.; Benbouras, M.A.; Mahar, W.A.; Zemmouri, N.; Attia, S. Development of Spatial Distribution Maps for Energy Demand and Thermal Comfort Estimation in Algeria. Sustainability 2020, 12, 6066. [CrossRef]
Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [CrossRef] [PubMed]
Ghedamsi, R.; Settou, N.; Gouareh, A.; Khamouli, A.; Saifi, N.; Recioui, B.; Dokkar, B. Modeling and forecasting energy consumption for residential buildings in Algeria using bottom-up approach. Energy Build. 2016, 121, 309–317. [CrossRef]
Ali-Toudert, F.; Mayer, H. Effects of asymmetry, galleries, overhanging façades and vegetation on thermal comfort in urban street canyons. Sol. Energy 2007, 81, 742–754. [CrossRef]
Arrar, F.H.; Kaoula, D.; Attia, S. Thermal Comfort Sentation Survey—In the Casbah of Algiers. Harvard Dataverse, 2022. Available online: https://dataverse.harvard.edu/citation?persistentId=doi:10.7910/DVN/JGBSLY (accessed on 2 March 2022).
Lam, C.K.C.; Gallant, A.J.E.; Tapper, N.J. Short-term changes in thermal perception associated with heatwave conditions in Melbourne, Australia. Theor. Appl. Climatol. 2019, 136, 651–660. [CrossRef]
Pantavou, K.; Santamouris, M.; Asimakopoulos, D.; Theoharatos, G. Empirical calibration of thermal indices in an urban outdoor Mediterranean environment. Build. Environ. 2014, 80, 283–292. [CrossRef]
de Freitas, C.R.; Grigorieva, E.A. A comprehensive catalogue and classification of human thermal climate indices. Int. J. Biometeorol. 2015, 59, 109–120. [CrossRef] [PubMed]
Ramos, G.; Lamberts, R.; Abrahão, K.C.F.J.; Bandeira, F.B.; Barbosa Teixeira, C.F.; Brito de Lima, M.; Broday, E.E.; Castro, A.P.A.S.; de Queiroz Leal, L.; De Vecchi, R.; et al. Adaptive behaviour and air conditioning use in Brazilian residential buildings. Build. Res. Inf. 2021, 49, 496–511. [CrossRef]
Arrar, F.H.; Attia, S.; Kaoula, D. Measured Comfort Data—Casbah 2022. Harvard Dataverse, 2022. Available online: https://dataverse.harvard.edu/citation?persistentId=doi:10.7910/DVN/R0AYI7 (accessed on 7 February 2022).
Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments—application of the RayMan model. Int. J. Biometeorol. 2007, 51, 323–334. [CrossRef] [PubMed]
Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments: Basics of the RayMan model. Int. J. Biometeorol. 2010, 54, 131–139. [CrossRef] [PubMed]
Matzarakis, A.; Mayer, H. Atmospheric Conditions and Human Thermal Comfort in Urban Areas. Available online: https://www. academia.edu/22149633/Atmospheric_conditions_and_human_thermal_comfort_in_urban_areas (accessed on 4 March 2022).
Matzarakis, A. RayMan Pro—A tool for Applied Climatology: Modelling of Mean Radiant Temperature and Thermal Indices. Available online: https://www.urbanclimate.net/rayman/RayManManual.pdf (accessed on 4 March 2022).
Chen, Y.-C.; Matzarakis, A. Modification of physiologically equivalent temperature. Theor. Appl. Climatol. 2018, 132, 1275–1289. [CrossRef]
Fröhlich, D.; Matzarakis, A. A quantitative sensitivity analysis on the behaviour of common thermal indices under hot and windy conditions in Doha, Qatar. Theor. Appl. Climatol. 2016, 124, 179–187. [CrossRef]
Höppe, P.R. The physiological equivalent temperature—a universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 1999, 43, 71–75. [CrossRef] [PubMed]
Potchter, O.; Cohen, P.; Lin, T.-P.; Matzarakis, A. Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification. Sci. Total Environ. 2018, 631–632, 390–406. [CrossRef]
Matzarakis, A.; Mayer, H.; Iziomon, M.G. Applications of a universal thermal index: Physiological equivalent temperature. Int. J. Biometeorol. 1999, 43, 76–84. [CrossRef] [PubMed]
Hien, W.N.; Jusuf, S.K. Air Temperature Distribution and the Influence of Sky View Factor in a Green Singapore Estate. J. Urban Plan. Dev. 2010, 136, 261–272. [CrossRef]
Wang, Y.; Berardi, U.; Akbari, H. Comparing the effects of urban heat island mitigation strategies for Toronto, Canada. Energy Build. 2016, 114, 2–19. [CrossRef]
Oke, T.R.; East, C. The urban boundary layer in Montreal. Bound.-Layer Meteorol. 1971, 1, 411–437. [CrossRef]
Hwang, R.-L.; Lin, T.-P.; Matzarakis, A. Seasonal effects of urban street shading on long-term outdoor thermal comfort. Build. Environ. 2011, 46, 863–870. [CrossRef]
Ketterer, C.; Matzarakis, A. Comparison of different methods for the assessment of the urban heat island in Stuttgart, Germany. Int. J. Biometeorol. 2015, 59, 1299–1309. [CrossRef] [PubMed]
Chatzidimitriou, A.; Yannas, S. Street canyon design and improvement potential for urban open spaces; the influence of canyon aspect ratio and orientation on microclimate and outdoor comfort. Sustain. Cities Soc. 2017, 33, 85–101. [CrossRef]
Laureti, F.; Martinelli, L.; Battisti, A. Assessment and Mitigation Strategies to Counteract Overheating in Urban Historical Areas in Rome. Climate 2018, 6, 18. [CrossRef]
Nasrollahi, N.; Hatami, Z.; Taleghani, M. Development of outdoor thermal comfort model for tourists in urban historical areas; A case study in Isfahan. Build. Environ. 2017, 125, 356–372. [CrossRef]
Fahmy, M.; Mahdy, M.; Mahmoud, S.; Abdelalim, M.; Ezzeldin, S.; Attia, S. Influence of urban canopy green coverage and future climate change scenarios on energy consumption of new sub-urban residential developments using coupled simulation techniques: A case study in Alexandria, Egypt. Energy Rep. 2020, 6, 638–645. [CrossRef]
Roshan, G.; Saleh Almomenin, H.; da Silveira Hirashima, S.Q.; Attia, S. Estimate of outdoor thermal comfort zones for different climatic regions of Iran. Urban Clim. 2019, 27, 8–23. [CrossRef]
Früh, B.; Becker, P.; Deutschländer, T.; Hessel, J.-D.; Kossmann, M.; Mieskes, I.; Namyslo, J.; Roos, M.; Sievers, U.; Steigerwald, T.; et al. Estimation of Climate-Change Impacts on the Urban Heat Load Using an Urban Climate Model and Regional Climate Projections. J. Appl. Meteorol. Climatol. 2011, 50, 167–184. [CrossRef]
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.