General Earth and Planetary Sciences; Geophysics; Ganymede , Jupiter , Juno, footprint, flux tube, electron beam
Abstract :
[en] Jupiter's satellite auroral footprints are a manifestation of the satellite-magnetosphere interaction of the Galilean moons. Juno's polar elliptical orbit enables crossing the magnetic flux tubes connecting each Galilean moon with their associated auroral emission. Its payload allows measuring the fields and particle population in the flux tubes while remotely sensing their associated auroral emissions. During its thirtieth perijove, Juno crossed the flux tube directly connected to Ganymede's leading footprint spot, a unique event in the entire Juno prime mission. Juno revealed a highly-structured precipitating electron flux, up to 316 mW/m 2, while measuring both a small perturbation in the magnetic field azimuthal component and small Poynting flux with an estimated total downward current of 4.2 ± 1.2 kA. Based on the evolution of the footprint morphology and the field and particle measurements, Juno transited for the first time through a region connected to the transhemispheric electron beam of the Ganymede footprint.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Hue, V. ; Southwest Research Institute San Antonio TX USA
Szalay, J. R. ; Department of Astrophysical Sciences Princeton University Princeton NJ USA
Greathouse, T. K. ; Southwest Research Institute San Antonio TX USA
Bonfond, Bertrand ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR)
Kotsiaros, S. ; National Space Institute Measurement and Instrumentation Systems DTU Kongens Lyngby Denmark
Louis, C. K. ; School of Cosmic Physics DIAS Dunsink Observatory Dublin Institute for Advanced Studies Dublin Ireland
Sulaiman, A. H. ; Department of Physics and Astronomy University of Iowa Iowa City IA USA
Clark, G. ; Johns Hopkins University Applied Physics Laboratory Laurel MD USA
Allegrini, F.; Southwest Research Institute San Antonio TX USA ; University of Texas at San Antonio San Antonio TX USA
Gladstone, G. R. ; Southwest Research Institute San Antonio TX USA ; University of Texas at San Antonio San Antonio TX USA
Paranicas, C. ; Johns Hopkins University Applied Physics Laboratory Laurel MD USA
Versteeg, M. H. ; Southwest Research Institute San Antonio TX USA
Mura, A. ; Institute for Space Astrophysics and Planetology National Institute for Astrophysics Rome Italy
Moirano, A. ; Institute for Space Astrophysics and Planetology National Institute for Astrophysics Rome Italy
Gershman, D. J. ; NASA Goddard Spaceflight Center Greenbelt MD USA
Bolton, S. J.; Southwest Research Institute San Antonio TX USA
Connerney, J. E. P. ; NASA Goddard Spaceflight Center Greenbelt MD USA ; Space Research Corporation Annapolis MD USA
Davis, M. W. ; Southwest Research Institute San Antonio TX USA
Ebert, R. W. ; Southwest Research Institute San Antonio TX USA ; University of Texas at San Antonio San Antonio TX USA
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO)
Giles, R. S. ; Southwest Research Institute San Antonio TX USA
Grodent, Denis ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR)
Imai, M. ; Department of Electrical Engineering and Information Science National Institute of Technology (KOSEN) Niihama College Niihama Japan
Kammer, J. A. ; Southwest Research Institute San Antonio TX USA
Kurth, W. S. ; Department of Physics and Astronomy University of Iowa Iowa City IA USA
Lamy, L. ; LESIA, Observatoire de Paris Université PSL CNRS Sorbonne Université Université de Paris Meudon France ; LAM, Pythéas Aix Marseille Université CNRS CNES Marseille France
Mauk, B. H. ; Johns Hopkins University Applied Physics Laboratory Laurel MD USA
BELSPO - Belgian Science Policy Office JSPS - Japan Society for the Promotion of Science SFI - Science Foundation Ireland UI - University of Iowa F.R.S.-FNRS - Fonds de la Recherche Scientifique
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Adriani, A., Filacchione, G., Di Iorio, T., Turrini, D., Noschese, R., Cicchetti, A., et al. (2017). JIRAM, the Jovian infrared auroral mapper. Space Science Reviews, 213, 393–446. https://doi.org/10.1007/s11214-014-0094-y
Allegrini, F., Gladstone, G. R., Hue, V., Clark, G., Szalay, J. R., Kurth, W. S., et al. (2020). First Report of electron measurements during a Europa footprint tail crossing by Juno. Geophysical Research Letters, 47(18), e89732. https://doi.org/10.1029/2020GL089732
Allegrini, F., Mauk, B., Clark, G., Gladstone, G. R., Hue, V., Kurth, W. S., et al. (2020). Energy flux and characteristic energy of electrons over Jupiter’s main auroral emission. Journal of Geophysical Research: Space Physics, 125(4), e27693. https://doi.org/10.1029/2019JA027693
Bolton, S. J., Adriani, A., Adumitroaie, V., Allison, M., Anderson, J., Atreya, S., et al. (2017). Jupiter’s interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft. Science, 356, 821–825. https://doi.org/10.1126/science.aal2108
Bonfond, B. (2012). When moons create aurora: The satellite footprints on giant planets. In Auroral phenomenology and magnetospheric processes: Earth and other planets (pp. 133–140). American Geophysical Union (AGU). Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011GM001169
Bonfond, B., Gladstone, G. R., Grodent, D., Gérard, J. C., Greathouse, T. K., Hue, V., et al. (2018). Bar code events in the Juno-UVS data: Signature 10 MeV electron microbursts at Jupiter. Geophysical Research Letters, 45(2212), 108–112. 115. https://doi.org/10.1029/2018GL080490
Bonfond, B., Gladstone, G. R., Grodent, D., Greathouse, T. K., Versteeg, M. H., Hue, V., et al. (2017). Morphology of the UV aurorae Jupiter during Juno’s first perijove observations. Geophysical Research Letters, 44, 4463–4471. https://doi.org/10.1002/2017GL073114
Bonfond, B., Grodent, D., Badman, S. V., Saur, J., Gérard, J.-C., & Radioti, A. (2017). Similarity of the Jovian satellite footprints: Spots multiplicity and dynamics. Icarus, 292, 208–217. https://doi.org/10.1016/j.icarus.2017.01.009
Bonfond, B., Grodent, D., Gérard, J. C., Radioti, A., Dols, V., Delamere, P. A., & Clarke, J. T. (2009). The Io UV footprint: Location, inter-spot distances and tail vertical extent. Journal of Geophysical Research, 114(A7), A07224. https://doi.org/10.1029/2009JA014312
Bonfond, B., Grodent, D., Gérard, J.-C., Radioti, A., Saur, J., & Jacobsen, S. (2008). UV Io footprint leading spot: A key feature for understanding the UV Io footprint multiplicity? Geophysical Research Letters, 35, L05107. https://doi.org/10.1029/2007GL032418
Bonfond, B., Grodent, D., Gérard, J. C., Stallard, T., Clarke, J. T., Yoneda, M., et al. (2012). Auroral evidence of Io’s control over the magnetosphere of Jupiter. Geophysical Research Letters, 39(1), L01105. https://doi.org/10.1029/2011GL050253
Bonfond, B., Hess, S., Bagenal, F., Gérard, J. C., Grodent, D., Radioti, A., et al. (2013). The multiple spots of the Ganymede auroral footprint. Geophysical Research Letters, 40(19), 4977–4981. https://doi.org/10.1002/grl.50989
Bonfond, B., Saur, J., Grodent, D., Badman, S. V., Bisikalo, D., Shematovich, V., et al. (2017). The tails of the satellite auroral footprints at Jupiter. Journal of Geophysical Research: Space Physics, 122, 7985–7996. https://doi.org/10.1002/2017JA024370
Bonfond, B., Yao, Z. H., Gladstone, G. R., Grodent, D., Gérard, J.-C., Matar, J., et al. (2021). Are dawn storms jupiter’s auroral substorms? AGU Advances, 2(1), e2020AV000275. https://doi.org/10.1029/2020av000275
Clarke, J. T., Grodent, D., Cowley, S. W. H., Bunce, E. J., Zarka, P., Connerney, J. E. P., & Satoh, T. (2004). Jupiter’s aurora. In F. Bagenal, T. E. Dowling, & W. B. McKinnon (Eds.), In: Jupiter. the planet, satellites and magnetosphere. edited by fran bagenal, timothy e. dowling, william b. mckinnon. Cambridge planetary science (Vol. 11, pp. 639–670). Cambridge university press (ISBN: 0-521-81808-7).
Connerney, J. E. P., Acuna, M. H., & Ness, N. F. (1981). Modeling the Jovian current sheet and inner magnetosphere. Journal of Geophysical Researtch, 86(A10), 8370–8384. https://doi.org/10.1029/JA086iA10p08370
Connerney, J. E. P., Benn, M., Bjarno, J. B., Denver, T., Espley, J., Jorgensen, J. L., et al. (2017). The Juno magnetic field investigation. Space science Reviews, 213(1–4), 39–138. https://doi.org/10.1007/s11214-017-0334-z
Connerney, J. E. P., Kotsiaros, S., Oliversen, R. J., Espley, J. R., Joergensen, J. L., Joergensen, P. S., et al. (2018). A New model of Jupiter’s magnetic field from Juno’s first nine orbits. Geophysical Research Letters, 45, 2590–2596. https://doi.org/10.1002/2018GL077312
Connerney, J. E. P., Timmins, S., Herceg, M., & Joergensen, J. L. (2020). A Jovian magnetodisc model for the Juno Era. Journal of Geophysical Research: Space Physics, 125(10), e28138. https://doi.org/10.1029/2020JA028138
Damiano, P. A., Delamere, P. A., Stauffer, B., Ng, C. S., & Johnson, J. R. (2019). Kinetic simulations of electron acceleration by dispersive scale Alfvén waves in Jupiter’s magnetosphere. Geophysical Research Letters, 46(6), 3043–3051. https://doi.org/10.1029/2018GL081219
Davis, M. W., Gladstone, G. R., Greathouse, T. K., Slater, D. C., Versteeg, M. H., Persson, K. B., et al. (2011). Radiometric performance results of the Juno ultraviolet spectrograph (Juno-UVS). In (Vol. 8146, p. 814604). https://doi.org/10.1117/12.894274
Delamere, P. A., Bagenal, F., Ergun, R., & Su, Y. J. (2003). Momentum transfer between the Io plasma wake and Jupiter’s ionosphere. Journal of Geophysical Research, 108(A6), 1241. https://doi.org/10.1029/2002JA009530
Ebert, R. W., Greathouse, T. K., Clark, G., Allegrini, F., Bagenal, F., Bolton, S. J., et al. (2019). Comparing electron energetics and UV brightness in Jupiter’s northern polar region during Juno perijove 5. Geophysical Research Letters, 46(1), 19–27. https://doi.org/10.1029/2018GL081129
Farrell, W. M., Gurnett, D. A., Banks, P. M., Bush, R. I., & Raitt, W. J. (1988). An analysis of whistler mode radiation from the spacelab 2 electron beam. Journal of Geophysical Researtch, 93(A1), 153–161. https://doi.org/10.1029/JA093iA01p00153
Gérard, J. C., Bonfond, B., Mauk, B. H., Gladstone, G. R., Yao, Z. H., Greathouse, T. K., et al. (2019). Contemporaneous observations of Jovian energetic auroral electrons and ultraviolet emissions by the Juno spacecraft. Journal of Geophysical Research: Space Physics, 124(11), 8298–8317. https://doi.org/10.1029/2019JA026862
Gérard, J.-C., Saglam, A., Grodent, D., & Clarke, J. T. (2006). Morphology of the ultraviolet Io footprint emission and its control by Io’s location. Journal of Geophysical Research, 111, A04202. https://doi.org/10.1029/2005JA011327
Gershman, D. J., Connerney, J. E. P., Kotsiaros, S., DiBraccio, G. A., Martos, Y. M., -Viñas, A. F., et al. (2019). Alfvénic fluctuations associated with Jupiter’s auroral emissions. Geophysical Research Letters, 46(13), 7157–7165. https://doi.org/10.1029/2019GL082951
Giles, R. S., Greathouse, T. K., Bonfond, B., Gladstone, G. R., Kammer, J. A., Hue, V., et al. (2020). Possible transient luminous events observed in Jupiter’s upper atmosphere. Journal of Geophysical Research: Planets, 125(11), e06659. https://doi.org/10.1029/2020JE006659
Giles, R. S., Greathouse, T. K., Kammer, J. A., Gladstone, G. R., Bonfond, B., Hue, V., et al. (2021). Detection of a Bolide in Jupiter’s atmosphere with Juno UVS. Geophysical Research Letters, 48(5), e91797. https://doi.org/10.1029/2020GL091797
Gladstone, G. R., Persyn, S. C., Eterno, J. S., Walther, B. C., Slater, D. C., Davis, M. W., et al. (2017). The ultraviolet spectrograph on NASA’s Juno mission. ssr, 213, 447–473. https://doi.org/10.1007/s11214-014-0040-z
Gladstone, G. R., Versteeg, M. H., Greathouse, T. K., Hue, V., Davis, M. W., Gérard, J.-C., et al. (2017). Juno-UVS approach observations of Jupiter’s auroras. Geophysical Research Letters, 44, 7668–7675. https://doi.org/10.1002/2017GL073377
Goertz, C. K. (1980). Io’s interaction with the plasma torus. Journal of Geophysical Researtch, 85, 2949–2956. https://doi.org/10.1029/JA085iA06p02949
Greathouse, T. K., Gladstone, G. R., Davis, M. W., Slater, D. C., Versteeg, M. H., Persson, K. B., et al. (2013). Performance results from in-flight commissioning of the Juno ultraviolet spectrograph (Juno-UVS).In Uv, x-ray, and gamma-ray space instrumentation for astronomy xviii, 8859. https://doi.org/10.1117/12.2024537
Grodent, D., Bonfond, B., Radioti, A., Gérard, J.-C., Jia, X., Nichols, J. D., & Clarke, J. T. (2009). Auroral footprint of Ganymede. Journal of Geophysical Research, 114, A07212. https://doi.org/10.1029/2009JA014289
Gustin, J., Grodent, D., Ray, L. C., Bonfond, B., Bunce, E. J., Nichols, J. D., & Ozak, N. (2016). Characteristics of north jovian aurora from STIS FUV spectral images. Icarus, 268, 215–241. https://doi.org/10.1016/j.icarus.2015.12.048
Haewsantati, K., Bonfond, B., Wannawichian, S., & Gladstone, G. R. (2020). Jupiter’s polar auroral bright spots as seen by Juno-UVS. In Egu general assembly conference abstracts (p. 3622).
Hue, V., Gladstone, G. R., Greathouse, T. K., Kammer, J. A., Davis, M. W., Bonfond, B., et al. (2019). In-flight characterization and calibration of the Juno-Ultraviolet Spectrograph (Juno-UVS). The Astronomical Journal, 157(2), 90. https://doi.org/10.3847/1538-3881/aafb36
Hue, V., Greathouse, T. K., Bonfond, B., Saur, J., Gladstone, G. R., Roth, L., et al. (2019). Juno-UVS observation of the Io footprint during solar eclipse. Journal of Geophysical Research: Space Physics, 124(7), 5184–5199. https://doi.org/10.1029/2018JA026431
Hue, V., Greathouse, T. K., Gladstone, G. R., Bonfond, B., Gérard, J. C., Vogt, M. F., et al. (2021). Detection and characterization of circular expanding UV emissions observed in Jupiter’s polar auroral regions. Journal of Geophysical Research: Space Physics, 126(3), e28971. https://doi.org/10.1029/2020JA028971
Huscher, E., Bagenal, F., Wilson, R. J., Allegrini, F., Ebert, R. W., Valek, P. W., et al. (2021). Survey of Juno Observations in Jupiterr’s Plasma Disk: Density. Journal of Geophysical Research: Space Physics, 126(8), e2021JA029446. https://doi.org/10.1029/2021JA029446
Jia, X., Walker, R. J., Kivelson, M. G., Khurana, K. K., & Linker, J. A. (2009). Properties of Ganymede’s magnetosphere inferred from improved three-dimensional MHD simulations. Journal of Geophysical Research, 114(A9), A09209. https://doi.org/10.1029/2009JA014375
Jones, S. T., & Su, Y. J. (2008). Role of dispersive Alfvén waves in generating parallel electric fields along the Io-Jupiter fluxtube. Journal of Geophysical Research, 113(A12), A12205. https://doi.org/10.1029/2008JA013512
Kammer, J. A., Hue, V., Greathouse, T. K., Gladstone, G. R., Davis, M. W., & Versteeg, M. H. (2019). Planning operations in Jupiter’s high-radiation environment: Optimization strategies from Juno-ultraviolet spectrograph. Journal of Astronomical Telescopes, Instruments, and Systems, 5, 027001. https://doi.org/10.1117/1.JATIS.5.2.027001
Kivelson, M. G., Bagenal, F., Kurth, W. S., Neubauer, F. M., Paranicas, C., & Saur, J. (2004). Magnetospheric interactions with satellites. In F. Bagenal, T. E. Dowling, & W. B. McKinnon (Eds.), Jupiter. the planet, satellites and magnetosphere (pp. 513–536).
Kotsiaros, S., Connerney, J. E. P., Clark, G., Allegrini, F., Gladstone, G. R., Kurth, W. S., et al. (2019). Birkeland currents in Jupiter’s magnetosphere observed by the polar-orbiting Juno spacecraft. Nature Astronomy, 3, 904–909. https://doi.org/10.1038/s41550-019-0819-7
Kurth, W. S., Hospodarsky, G. B., Kirchner, D. L., Mokrzycki, B. T., Averkamp, T. F., Robison, W. T., et al. (2017). The Juno waves investigation. Space Science Reviews, 213, 347–392. https://doi.org/10.1007/s11214-017-0396-y
Li, W., Thorne, R. M., Ma, Q., Zhang, X.-J., Gladstone, G. R., Hue, V., et al. (2017). Understanding the origin of Jupiter’s diffuse aurora using Juno’s first perijove observations. Geophysical Research Letters, 44, 10. https://doi.org/10.1002/2017GL075545
Louarn, P., Allegrini, F., McComas, D. J., Valek, P. W., Kurth, W. S., André, N., et al. (2017). Generation of the Jovian hectometric radiation: First lessons from Juno. Geophysical Research Letters, 44(10), 4439–4446. https://doi.org/10.1002/2017GL072923
Louarn, P., Allegrini, F., McComas, D. J., Valek, P. W., Kurth, W. S., André, N., et al. (2018). Observation of electron conics by Juno: Implications for radio generation and acceleration processes. Geophysical Research Letters, 45(18), 9408–9416. https://doi.org/10.1029/2018GL078973
Louis, C. K., Louarn, P., Allegrini, F., Kurth, W. S., & Szalay, J. R. (2020). Ganymede-Induced decametric radio emission: In situ observations and measurements by Juno. Geophysical Research Letters, 47(20), e90021. https://doi.org/10.1029/2020GL090021
Mauk, B. H., Clark, G., Gladstone, G. R., Kotsiaros, S., Adriani, A., Allegrini, F., et al. (2020). Energetic particles and acceleration regions over Jupiter’s polar cap and main aurora: A broad overview. Journal of Geophysical Research: Space Physics, 125(3), e27699. https://doi.org/10.1029/2019JA027699
Mauk, B. H., Haggerty, D. K., Jaskulek, S. E., Schlemm, C. E., Brown, L. E., Cooper, S. A., et al. (2017). The Jupiter energetic particle detector instrument (JEDI) investigation for the Juno mission. Space Science Reciews, 213(1–4), 289–346. https://doi.org/10.1007/s11214-013-0025-3
McComas, D. J., Alexander, N., Allegrini, F., Bagenal, F., Beebe, C., Clark, G., et al. (2017). The Jovian auroral distributions experiment (JADE) on the Juno mission to Jupiter. Space Science Reciews, 213, 547–643. https://doi.org/10.1007/s11214-013-9990-9
Moirano, A., Mura, A., Adriani, A., Dols, V., Bonfond, B., Waite, J. H., & Bolton, S. J. (2021). Morphology of the auroral tail of io, europa, and ganymede from jiram l-band imager. Journal of Geophysical Research: Space Physics, 126(9). e2021JA029450. https://doi.org/10.1029/2021ja029450
Mura, A., Adriani, A., Connerney, J. E. P., Bolton, S., Altieri, F., Bagenal, F., et al. (2018). Juno observations of spot structures and a split tail in Io-induced aurorae on Jupiter. Science, 361, 774–777. https://doi.org/10.1126/science.aat1450
Neubauer, F. M. (1980). Nonlinear standing Alfven wave current system at Io—Theory. Journal of Geophysical Research, 85, 1171–1178. https://doi.org/10.1029/JA085iA03p01171
Phipps, P., & Bagenal, F. (2021). Centrifugal equator in Jupiter’s plasma sheet. Journal of Geophysical Research: Space Physics, 126(1), e28713. https://doi.org/10.1029/2020JA028713
Saur, J., Neubauer, F. M., Connerney, J. E. P., Zarka, P., & Kivelson, M. G. (2004). Plasma interaction of Io with its plasma torus. In F. Bagenal, T. E. Dowling, & W. B. McKinnon (Eds.), Jupiter. the planet, satellites and magnetosphere (pp. 537–560).
Sulaiman, A. H., Hospodarsky, G. B., Elliott, S. S., Kurth, W. S., Gurnett, D. A., Imai, M., et al. (2020). Wave-particle interactions associated with Io’s auroral footprint: Evidence of Alfvén, ion cyclotron, and whistler modes. Geophysical Research Letters, 47(22), e88432. https://doi.org/10.1029/2020GL088432
Sulaiman, A. H., Kurth, W. S., Hospodarsky, G. B., Averkamp, T. F., Ye, S. Y., Menietti, J. D., et al. (2018). Enceladus auroral hiss emissions during cassini’s grand finale. Geophysical Research Letters, 45(15), 7347–7353. https://doi.org/10.1029/2018GL078130
Szalay, J. R., Allegrini, F., Bagenal, F., Bolton, S. J., Bonfond, B., Clark, G., et al. (2020a). Alfvénic acceleration sustains Ganymede’s footprint tail aurora. Geophysical Research Letters, 47(3), e86527. https://doi.org/10.1029/2019GL086527
Szalay, J. R., Allegrini, F., Bagenal, F., Bolton, S. J., Bonfond, B., Clark, G., et al. (2020b). A New framework to explain changes in Io’s footprint tail electron fluxes.Geophysical Research Letters, 47(18), e89267. https://doi.org/10.1029/2020GL089267
Szalay, J. R., Bonfond, B., Allegrini, F., Bagenal, F., Bolton, S., Clark, G., et al. (2018). In situ observations connected to the io footprint tail aurora. Journal of Geophysical Research: Planets, 123(11), 3061–3077. https://doi.org/10.1029/2018JE005752
Thomas, N., Bagenal, F., Hill, T. W., & Wilson, J. K. (2004). The Io neutral clouds and plasma torus. In F. Bagenal, T. E. Dowling, & W. B. McKinnon (Eds.), Jupiter. the planet, satellites and magnetosphere (pp. 561–591).
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.