Space and Planetary Science; Geophysics; Mars, Aurora, magnetic field, solar wind, MAVEN
Abstract :
[en] Discrete aurora at Mars, characterized by their small spatial scale and tendency to form near strong crustal magnetic fields, are emissions produced by particle precipitation into the Martian upper atmosphere. Since 2014, Mars Atmosphere and Volatile EvolutioN's (MAVEN's) Imaging Ultraviolet
Spectrograph (IUVS) has obtained a large collection of UV discrete aurora observations during its routine periapsis nightside limb scans. Initial analysis of these observations has shown that, near the strongest crustal magnetic fields in the southern hemisphere, the IUVS discrete aurora detection frequency is highly sensitive to the interplanetary magnetic field (IMF) clock angle. However, the role of other solar wind properties in
controlling the discrete aurora detection frequency has not yet been determined. In this work, we use the IUVS discrete aurora observations, along with MAVEN observations of the upstream solar wind, to determine how the discrete aurora detection frequency varies with solar wind dynamic pressure, IMF strength, and IMF cone angle. We find that, outside of the strong crustal field region (SCFR) in the southern hemisphere, the aurora detection frequency is relatively insensitive to the IMF orientation, but significantly increases with
solar wind dynamic pressure, and moderately increases with IMF strength. Interestingly however, although high solar wind dynamic pressures cause more aurora to form, they have little impact on the brightness of the auroral emissions. Alternatively, inside the SCFR, the detection frequency is only moderately dependent on the solar wind dynamic pressure, and is much more sensitive to the IMF clock and cone angles. In the
SCFR, aurora are unlikely to occur when the IMF points near the radial or anti-radial directions when the cone angle (arccos(Bx/|B|)) is less than 30° or between 120° and 150°. Together, these results provide the first comprehensive characterization of how upstream solar wind conditions affect the formation of discrete aurora at Mars.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Girazian, Z. ; Department of Physics and Astronomy University of Iowa Iowa City IA USA
Schneider, N. M. ; Laboratory for Atmospheric and Space Physics University of Colorado Boulder Boulder CO USA
Milby, Z. ; Laboratory for Atmospheric and Space Physics University of Colorado Boulder Boulder CO USA
Fang, X. ; Laboratory for Atmospheric and Space Physics University of Colorado Boulder Boulder CO USA
Halekas, J. ; Department of Physics and Astronomy University of Iowa Iowa City IA USA
Weber, T. ; NASA Goddard Space Flight Center Greenbelt MD USA
Jain, S. K. ; Laboratory for Atmospheric and Space Physics University of Colorado Boulder Boulder CO USA
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO)
Soret, Lauriane ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR)
Deighan, J. ; Laboratory for Atmospheric and Space Physics University of Colorado Boulder Boulder CO USA
Lee, C. O. ; Space Sciences Laboratory University of California Berkeley CA USA
Language :
English
Title :
Discrete Aurora at Mars: Dependence on Upstream Solar Wind Conditions
Akbari, H., Andersson, L., Fowler, C., & Mitchell, D. (2019). Spectral analysis of accelerated electron populations at Mars. Journal of Geophysical Research: Space Physics, 124(10), 8056–8065. https://doi.org/10.1029/2019JA026738
Allen, R. C., Ho, G. C., Jian, L. K., Vines, S. K., Bale, S. D., Case, A. W., et al. (2021). A living catalog of stream interaction regions in the Parker Solar Probe era. Astronomy & Astrophysics, 650, A25. https://doi.org/10.1051/0004-6361/202039833
Bertaux, J.-L., Korablev, O., Perrier, S., Quémerais, E., Montmessin, F., Leblanc, F., et al. (2006). SPICAM on Mars Express: Observing modes and overview of UV spectrometer data and scientific results. Journal of Geophysical Research, 111(E10), 1–40. https://doi.org/10.1029/2006JE002690
Bertaux, J.-L., Leblanc, F., Witasse, O., Quemerais, E., Lilensten, J., Stern, S. A., et al. (2005). Discovery of an aurora on Mars. Nature, 435(7043), 790–794. https://doi.org/10.1038/nature03603
Birn, J., Artemyev, A. V., Baker, D. N., Echim, M., Hoshino, M., & Zelenyi, L. M. (2012). Particle acceleration in the magnetotail and aurora. Space Science Reviews, 173(1–4), 49–102. https://doi.org/10.1007/s11214-012-9874-4
Brain, D., & Halekas, J. S. (2013). Aurora in Martian mini magnetospheres. In A. Keiling, E. Donovan, F. Bagenal, & T. Karlsson (Eds.), Geophysical monograph series (pp. 123–132). American Geophysical Union. https://doi.org/10.1029/2011GM001201
Brain, D. A., Halekas, J. S., Peticolas, L. M., Lin, R. P., Luhmann, J. G., Mitchell, D. L., et al. (2006). On the origin of aurorae on Mars. Geophysical Research Letters, 33(1). https://doi.org/10.1029/2005GL024782
Brain, D. A., Weber, T., Xu, S., Mitchell, D. L., Lillis, R. J., Halekas, J. S., et al. (2020). Variations in nightside magnetic field topology at Mars. Geophysical Research Letters, 47, e2020GL088921. https://doi.org/10.1029/2020GL088921
Deighan, J., Jain, S. K., Chaffin, M. S., Fang, X., Halekas, J. S., Clarke, J. T., et al. (2018). Discovery of a proton aurora at Mars. Nature Astronomy, 2(10), 802–807. https://doi.org/10.1038/s41550-018-0538-5
Fang, X., Ma, Y., Luhmann, J., Dong, Y., Brain, D., Hurley, D., et al. (2018). The morphology of the solar wind magnetic field draping on the dayside of Mars and its variability. Geophysical Research Letters, 45(8), 3356–3365. https://doi.org/10.1002/2018GL077230
Fang, X., Ma, Y., Schneider, N., Girazian, Z., Luhmann, J., Milby, Z., et al. (2022). Discrete aurora on the nightside of Mars: Occurrence location and probability. Journal of Geophysical Research: Space Physics, 127, e2021JA029716. https://doi.org/10.1029/2021JA029716
Gérard, J.-C., Soret, L., Libert, L., Lundin, R., Stiepen, A., Radioti, A., & Bertaux, J.-L. (2015). Concurrent observations of ultraviolet aurora and energetic electron precipitation with Mars Express. Journal of Geophysical Research: Space Physics, 120(8), 6749–6765. https://doi.org/10.1002/2015JA021150
Halekas, J. S., Ruhunusiri, S., Harada, Y., Collinson, G., Mitchell, D. L., Mazelle, C., et al. (2017). Structure, dynamics, and seasonal variability of the Mars-solar wind interaction: MAVEN solar wind Ion Analyzer in-flight performance and science results. Journal of Geophysical Research: Space Physics, 122(1), 547–578. https://doi.org/10.1002/2016JA023167
Hughes, A., Chaffin, M., Mierkiewicz, E., Deighan, J., Jain, S., Schneider, N., et al. (2019). Proton aurora on Mars: A dayside Phenomenon Pervasive in southern summer. Journal of Geophysical Research: Space Physics, 124(12), 10533–10548. https://doi.org/10.1029/2019JA027140
Jain, S., Schneider, N. M. (2021). Discrete aurora on Mars: Insights into their distribution and activity from MAVEN/IUVS observations [data set]. University of Colorado Boulder. https://doi.org/10.25810/2A0H-9W11
Leblanc, F., Witasse, O., Lilensten, J., Frahm, R. A., Safaenili, A., Brain, D. A., et al. (2008). Observations of aurorae by SPICAM ultraviolet spectrograph on board Mars Express: Simultaneous ASPERA-3 and MARSIS measurements. Journal of Geophysical Research, 113(A8). https://doi.org/10.1029/2008JA013033
Leblanc, F., Witasse, O., Winningham, J., Brain, D., Lilensten, J., Blelly, P.-L., et al. (2006). Origins of the Martian aurora observed by spectroscopy for Investigation of characteristics of the atmosphere of Mars (SPICAM) on board Mars express. Journal of Geophysical Research, 111(A9). https://doi.org/10.1029/2006JA011763
Lee, C. O., Hara, T., Halekas, J. S., Thiemann, E., Chamberlin, P., Eparvier, F., et al. (2017). MAVEN observations of the solar cycle 24 space weather conditions at Mars. Journal of Geophysical Research: Space Physics, 122, 2768–2794. https://doi.org/10.1002/2016JA023495
Lee, C. O., Luhmann, J. G., de Pater, I., Mason, G. M., Haggerty, D., Richardson, I. G., et al. (2010). Organization of energetic particles by the solar wind structure during the declining to minimum phase of solar cycle 23. Solar Physics, 263(1), 239–261. https://doi.org/10.1007/s11207-010-9556-x
Lillis, R. J., & Brain, D. A. (2013). Nightside electron precipitation at Mars: Geographic variability and dependence on solar wind conditions. Journal of Geophysical Research, 118, 3546–3556. https://doi.org/10.1002/jgra.50171
Lillis, R. J., Mitchell, D. L., Steckiewicz, M., Brain, D., Xu, S., Weber, T., et al. (2018). Ionizing electrons on the Martian nightside: Structure and variability. Journal of Geophysical Research: Space Physics, 123(5), 4349–4363. https://doi.org/10.1029/2017JA025151
Marquette, M. L., Lillis, R. J., Halekas, J. S., Luhmann, J. G., Gruesbeck, J. R., & Espley, J. R. (2018). Autocorrelation study of solar wind Plasma and IMF properties as measured by the MAVEN spacecraft. Journal of Geophysical Research: Space Physics, 123(4), 2493–2512. https://doi.org/10.1002/2018JA025209
McClintock, W. E., Schneider, N. M., Holsclaw, G. M., Clarke, J. T., Hoskins, A. C., Stewart, I., et al. (2015). The imaging ultraviolet spectrograph (IUVS) for the MAVEN mission. Space Science Reviews, 195(1–4), 75–124. https://doi.org/10.1007/s11214-014-0098-7
Morschhauser, A., Lesur, V., & Grott, M. (2014). A spherical harmonic model of the lithospheric magnetic field of Mars. Journal of Geophysical Research: Planets, 119(6), 1162–1188. https://doi.org/10.1002/2013JE004555
Ritter, B., Gérard, J.-C., Hubert, B., Rodriguez, L., & Montmessin, F. (2018). Observations of the proton aurora on Mars with SPICAM on board Mars Express. Geophysical Research Letters, 45(2), 612–619. https://doi.org/10.1002/2017GL076235
Schneider, N. M., Deighan, J. I., Jain, S. K., Stiepen, A., Stewart, A. I. F., Larson, D., et al. (2015). Discovery of diffuse aurora on Mars. Science, 350(6261). https://doi.org/10.1126/science.aad0313
Schneider, N. M., Milby, Z., Jain, S. K., Gérard, J.-C., Soret, L., Brain, D. A., et al. (2021). Discrete aurora on Mars: Insights into their distribution and activity from MAVEN/IUVS observations. Journal of Geophysical Research: Space Physics, 126(10), e2021JA029428. https://doi.org/10.1029/2021JA029428
Soret, L., Gérard, J.-C., Libert, L., Shematovich, V. I., Bisikalo, D. V., Stiepen, A., & Bertaux, J.-L. (2016). SPICAM observations and modeling of Mars aurorae. Icarus, 264, 398–406. https://doi.org/10.1016/j.icarus.2015.09.023
Soret, L., Gérard, J.-C., Schneider, N., Jain, S., Milby, Z., Ritter, B., et al. (2021). Discrete Aurora on Mars: Spectral properties, vertical profiles, and electron energies. Journal of Geophysical Research: Space Physics, 126(10), e2021JA029495. https://doi.org/10.1029/2021JA029495
Weber, T., Brain, D., Mitchell, D., Xu, S., Espley, J., Halekas, J., et al. (2019). The influence of solar wind pressure on Martian crustal magnetic field topology. Geophysical Research Letters, 46, 2347–2354. https://doi.org/10.1029/2019GL081913
Weber, T., Brain, D., Xu, S., Mitchell, D., Espley, J., Halekas, J., et al. (2020). The influence of interplanetary magnetic field direction on Martian Crustal Magnetic Field Topology. Geophysical Research Letters, 47(19), e2020GL087757. https://doi.org/10.1029/2020GL087757
Weber, T. D. (2020). The role of crustal magnetic fields in atmospheric escape from Mars. Ph.D., University of Colorado at Boulder (ISBN: 9798557022927).
Xu, S., Mitchell, D. L., McFadden, J. P., Fillingim, M. O., Andersson, L., Brain, D. A., et al. (2020). Inverted-V electron acceleration events concurring with localized auroral observations at Mars by MAVEN. Geophysical Research Letters, 47, e2020GL087414. https://doi.org/10.1029/2020GL087414