Gravitational lensing: micro; Gravitational lensing: strong; Quasars: emission lines; Quasars: individual: QJ 0158-4325; Broad line region; Frequency variation; Gravitational lensing: micros; High frequency HF; Light curves; Micro-lensing; Quasar: individual: QJ 0158-4325; Quasars: emission line; Quasars: individual; Astronomy and Astrophysics; Space and Planetary Science; astro-ph.GA
Abstract :
[en] Gravitational microlensing is a powerful tool for probing the inner structure of strongly lensed quasars and for constraining parameters of the stellar mass function of lens galaxies. This is achieved by analysing microlensing light curves between the multiple images of strongly lensed quasars and accounting for the effects of three main variable components: (1) the continuum flux of the source, (2) microlensing by stars in the lens galaxy, and (3) reverberation of the continuum by the broad line region (BLR). The latter, ignored by state-of-the-art microlensing techniques, can introduce high-frequency variations which we show carry information on the BLR size. We present a new method that includes all these components simultaneously and fits the power spectrum of the data in the Fourier space rather than the observed light curve itself. In this new framework, we analyse COSMOGRAIL light curves of the two-image system QJ 0158-4325 known to display high-frequency variations. Using exclusively the low-frequency part of the power spectrum, our constraint on the accretion disk radius agrees with the thin-disk model estimate and the results of previous work where the microlensing light curves were fit in real space. However, if we also take into account the high-frequency variations, the data favour significantly smaller disk sizes than previous microlensing measurements. In this case, our results are only in agreement with the thin-disk model prediction only if we assume very low mean masses for the microlens population, i.e.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Paic, E. ; Institute of Physics, Laboratory of Astrophysics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, Versoix, Switzerland
Vernardos, G.; Institute of Physics, Laboratory of Astrophysics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, Versoix, Switzerland
Sluse, Dominique ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR) ; STAR Institute, Quartier Agora, Liège, Belgium
Millon, M. ; Institute of Physics, Laboratory of Astrophysics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, Versoix, Switzerland
Courbin, F. ; Institute of Physics, Laboratory of Astrophysics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, Versoix, Switzerland
Chan, J.H.; Institute of Physics, Laboratory of Astrophysics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, Versoix, Switzerland
Bonvin, V.; Institute of Physics, Laboratory of Astrophysics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, Versoix, Switzerland
Language :
English
Title :
Constraining quasar structure using high-frequency microlensing variations and continuum reverberation
Acknowledgements. This work is supported by the Swiss National Science Foundation (SNSF) and by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (COSMI-CLENS: grant agreement No 787886). G.V. has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodovska-Curie grant agreement No 897124. The authors wish to thank Aymeric Galan for useful comments and graphical contribution. Finally, we thank the anonymous referee for the useful comments that improved the clarity of the paper.
Alcock, C., Allsman, R. A., Alves, D. R., et al. 2001, ApJ, 550, L169
Bate, N. F., Floyd, D. J. E., Webster, R. L., & Wyithe, J. S. B. 2008, MNRAS, 391, 1955
Bate, N. F., Vernardos, G., O'Dowd, M. J., et al. 2018, MNRAS, 479, 4796
Bentz, M. C., Walsh, J. L., Barth, A. J., et al. 2009, ApJ, 705, 199
Blackburne, J. A., Pooley, D., & Rappaport, S. 2006, ApJ, 640, 569
Blackburne, J. A., Pooley, D., Rappaport, S., & Schechter, P. L. 2011, ApJ, 729, 34
Blandford, R. D., & McKee, C. F. 1982, ApJ, 255, 419
Borguet, B., Hutsemékers, D., Letawe, G., Letawe, Y., & Magain, P. 2008, A&A, 478, 321
Cantale, N., Courbin, F., Tewes, M., Jablonka, P., & Meylan, G. 2016, A&A, 589, A81
Chan, J. H. H., Millon, M., Bonvin, V., & Courbin, F. 2020, A&A, 636, A52
Chan, J. H. H., Rojas, K., Millon, M., et al. 2021, A&A, 647, A115
Chang, K., & Refsdal, S. 1979, Nature, 282, 561
Chen, B., Dai, X., Kochanek, C. S., et al. 2012, ApJ, 755, 24
Collin, S., Boisson, C., Mouchet, M., et al. 2002, A&A, 388, 771
Cornachione, M. A., & Morgan, C. W. 2020, ApJ, 895, 93
Cornachione, M. A., Morgan, C. W., Burger, H. R., et al. 2020a, ApJ, 905, 7
Cornachione, M. A., Morgan, C. W., Millon, M., et al. 2020b, ApJ, 895, 125
Courbin, F., Eigenbrod, A., Vuissoz, C., Meylan, G., & Magain, P. 2005, in Gravitational Lensing Impact on Cosmology, ed. Y. Mellier, & G. Meylan, 225, 297
Czerny, B., & Hryniewicz, K. 2011, A&A, 525, L8
Dai, X., & Guerras, E. 2018, ApJ, 853, L27
Dai, X., Kochanek, C. S., Chartas, G., et al. 2010, ApJ, 709, 278
Ding, X., Liao, K., Treu, T., et al. 2017a, MNRAS, 465, 4634
Ding, X., Treu, T., Suyu, S. H., et al. 2017b, MNRAS, 472, 90
Niikura, H., Takada, M., Yasuda, N., et al. 2019a, Nat. Astron., 3, 524
Niikura H., Takada, M., Yokoyama, S., Sumi, T., & Masaki, S. 2019b, Phys. Rev. D, 99
Peng, C. Y., Impey, C. D., Rix, H.-W., et al. 2006, ApJ, 649, 616
Penton, A., Malik, U., Davis, T., et al. 2022, MNRAS, 509, 4008
Peterson, B. 2006, in The Broad-Line Region in Active Galactic Nuclei, eds. D. Alloin, R. Johnson, & P. Lira (Berlin, Heidelberg: Springer, Berlin Heidelberg), 77
Peterson, B. M., Ali, B., Horne, K., et al. 1993, ApJ, 402, 469
Poindexter, S., & Kochanek, C. S. 2010, ApJ, 712, 668
Refsdal, S. 1964, MNRAS, 128, 307
Rojas, K., Motta, V., Mediavilla, E., et al. 2014, ApJ, 797, 61
Rojas, K., Motta, V., Mediavilla, E., et al. 2020, ApJ, 890, 3
Schmidt, R. W., & Wambsganss, J. 2010, Gen. Relativ. Gravit., 42, 2127
Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337
Sluse, D., & Tewes, M. 2014, A&A, 571, A60
Sluse, D., Claeskens, J. F., Hutsemékers, D., & Surdej, J. 2007, A&A, 468, 885
Sluse, D., Hutsemékers, D., Courbin, F., Meylan, G., & Wambsganss, J. 2012, A&A, 544, A62
Suberlak, K. L., Ivezíc, Z., & MacLeod, C. 2021, ApJ, 907, 96
Tewes, M., Courbin, F., & Meylan, G. 2013, A&A, 553, A120
Tremblay, G. R., Oonk, J. B. R., Combes, F., et al. 2016, Nature, 534, 218
Urry, C. M., & Padovani, P. 1995, PASP, 107, 803
Vernardos, G., & Fluke, C. J. 2014, MNRAS, 445, 1223
Vernardos, G., & Tsagkatakis, G. 2019, MNRAS, 486, 1944
Vernardos, G., Fluke, C. J., Bate, N. F., Croton, D., & Vohl, D. 2015, ApJS, 217, 23
Williams, P. R., Treu, T., Dahle, H., et al. 2021, ApJ, 911, 64
Wong, K. C., Suyu, S. H., Auger, M. W., et al. 2017, MNRAS, 465, 4895
Wong, K. C., Suyu, S. H., Chen, G. C. F., et al. 2020, MNRAS, 498, 1420
Yu, Z., Martini, P., Davis, T. M., et al. 2020, ApJS, 246, 16
Zhang, Z.-X., Du, P., Smith, P. S., et al. 2019, ApJ, 876, 49
Zu, Y., Kochanek, C. S., & Peterson, B. M. 2011, ApJ, 735, 80
Zu, Y., Kochanek, C. S., Kozlowski, S., & Udalski, A. 2013, ApJ, 765, 106