16S rRNA gene; captivity; conservation biology; diet; gut microbiota; reintroduction; wild mice; Ecology, Evolution, Behavior and Systematics; Ecology; Nature and Landscape Conservation
Abstract :
[en] Microbes can have important impacts on their host's survival. Captive breeding programs for endangered species include periods of captivity that can ultimately have an impact on reintroduction success. No study to date has investigated the impacts of captive diet on the gut microbiota during the relocation process of generalist species. This study simulated a captive breeding program with white-footed mice (Peromyscus leucopus) to describe the variability in gut microbial community structure and composition during captivity and relocation in their natural habitat, and compared it to wild individuals. Mice born in captivity were fed two different diets, a control with dry standardized pellets and a treatment with nonprocessed components that reflect a version of their wild diet that could be provided in captivity. The mice from the two groups were then relocated to their natural habitat. Relocated mice that had the treatment diet had more phylotypes in common with the wild-host microbiota than mice under the control diet or mice kept in captivity. These results have broad implications for our understanding of microbial community dynamics and the effects of captivity on reintroduced animals, including the potential impact on the survival of endangered species. This study demonstrates that ex situ conservation actions should consider a more holistic perspective of an animal's biology including its microbes.
Disciplines :
Microbiology
Author, co-author :
Van Leeuwen, Pauline ; Université de Liège - ULiège > Integrative Biological Sciences (InBioS) ; Department of Biology Laurentian University Sudbury ON Canada
Mykytczuk, Nadia; Vale Living with Lakes Centre Laurentian University Sudbury ON Canada
Mastromonaco, Gabriela F ; Reproductive Physiology Toronto Zoo Scarborough ON Canada
Schulte-Hostedde, Albrecht I ; Department of Biology Laurentian University Sudbury ON Canada
Language :
English
Title :
Effects of captivity, diet, and relocation on the gut bacterial communities of white-footed mice.
Publication date :
June 2020
Journal title :
Ecology and Evolution
eISSN :
2045-7758
Publisher :
John Wiley and Sons Ltd, Chichester, West Sussex, England
We are grateful to all staff at the Toronto Zoo for assisting with experimental design, sample collection, and the use of their facilities and also to Jasmine Veitch for manuscript editing. Funding was supported by the NSERC CREATE grant, ReNewZoo.
Allan, N., Knotts, T., Pesapane, R., Ramsey, J., Castle, S., Clifford, D., & Foley, J. (2018). Conservation implications of shifting gut microbiomes in captive-reared endangered voles intended for reintroduction into the wild. Microorganisms, 6(94), 1–17. https://doi.org/10.3390/microorganisms6030094
Amato, K. R. (2013). Co-evolution in context: The importance of studying gut microbiomes in wild animals. Microbiome Science and Medicine, 1(1), 10–29. https://doi.org/10.2478/micsm-2013-0002
Amato, K. R., Metcalf, J. L., Song, S. J., Hale, V. L., Clayton, J., Ackermann, G., … Braun, J. (2016). Using the gut microbiota as a novel tool for examining colobine primate GI health. Global Ecology and Conservation, 7, 225–237. https://doi.org/10.1016/j.gecco.2016.06.004
Andrews, S. (2010). FastQC: A quality control tool for high throughput sequence data. Retrieved from http://www.bioinformatics.babraham.ac.uk/projects/fastqc
Bahrndorff, S., Alemu, T., Alemneh, T., & Nielsen, J. L. (2016). The Microbiome of animals: Implications for conservation biology. International Journal of Genomics, 2016(January), 1–7. https://doi.org/10.1155/2016/5304028
Bokulich, N. A., Kaehler, B. D., Rideout, J. R., Dillon, M., Bolyen, E., Knight, R., … Gregory Caporaso, J. (2018). Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-classifier plugin. Microbiome, 6(1), 1–17. https://doi.org/10.1186/s40168-018-0470-z
Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C., Al-Ghalith, G. A., Alexander, H., … Caporaso, J. G. (2018). QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. PeerJ Preprints6:e27295v2. https://doi.org/10.7287/peerj.preprints.27295v2
Borbón-García, A., Reyes, A., Vives-Flórez, M., & Caballero, S. (2017). Captivity shapes the gut microbiota of Andean bears: Insights into health surveillance. Frontiers in Microbiology, 8(July), 1–12. https://doi.org/10.3389/fmicb.2017.01316
Cabana, F., Clayton, J. B., Nekaris, K. A. I., Wirdateti, W., Knights, D., & Seedorf, H. (2019). Nutrient-based diet modifications impact on the gut microbiome of the Javan slow loris (Nycticebus javanicus). Scientific Reports, 9(4078), 1–11. https://doi.org/10.1038/s41598-019-40911-0
Callahan, B. J., Mcmurdie, P. J., & Holmes, S. P. (2017). Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME Journal, 11(12), 2639–2643. https://doi.org/10.1038/ismej.2017.119
Callahan, B. J., Mcmurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581–588. https://doi.org/10.1038/nmeth.3869
Campbell, J. H., Foster, C. M., Vishnivetskaya, T., Campbell, A. G., Yang, Z. K., Wymore, A., … Podar, M. (2012). Host genetic and environmental effects on mouse intestinal microbiota. The ISME Journal, 6(11), 2033–2044. https://doi.org/10.1038/ismej.2012.54
Chen, J., Bittinger, K., Charlson, E. S., Hoffmann, C., Lewis, J., Wu, G. D., … Li, H. (2012). Associating microbiome composition with environmental covariates using generalized UniFrac distances. Bioinformatics, 28(16), 2106–2113. https://doi.org/10.1093/bioinformatics/bts342
Chong, R., Grueber, C. E., Fox, S., Wise, P., Barrs, V. R., Hogg, C. J., & Belov, K. (2019). Looking like the locals – Gut microbiome changes post-release in an endangered species. Animal Microbiome, 1(1), 1–10. https://doi.org/10.1186/s42523-019-0012-4
Clayton, J. B., Al-Ghalith, G. A., Long, H. T., Tuan, B. V., Cabana, F., Huang, H. U., … Johnson, T. J. (2018). Associations between nutrition, gut microbiome, and health in a novel nonhuman primate model. Scientific Reports, 8(1), 1–16. https://doi.org/10.1038/s41598-018-29277-x
Clayton, J. B., Vangay, P., Huang, H. U., Ward, T., Hillmann, B. M., Al-Ghalith, G. A., … Knights, D. (2016). Captivity humanizes the primate microbiome. Proceedings of the National Academy of Sciences of the United States of America, 113(37), 10376–10381. https://doi.org/10.1073/pnas.1521835113
Colston, T. J. (2017). Gut microbiome transmission in lizards. Molecular Ecology, 26(4), 972–974. https://doi.org/10.1111/mec.13987
Ezenwa, V. O., Gerardo, N. M., Inouye, D. W., Medina, M., & Xavier, J. B. (2012). Animal behavior and the microbiome. Science, 338(6104), 198–199. https://doi.org/10.1126/science.1227412
Fischer, J., & Lindenmayer, D. B. (2000). An assessment of the published results of animal relocations. Biological Conservation, 96(1), 1–11. https://doi.org/10.1016/S0006-3207(00)00048-3
Frankel, J. S., Mallott, E. K., Hopper, L. M., Ross, S. R., & Amato, K. R. (2019). The effect of captivity on the primate gut microbiome varies with host dietary niche. American Journal of Primatology, 81(12), 1–9. https://doi.org/10.1002/ajp.23061
Game, E. T., Meijaard, E., Sheil, D., & Mcdonald-Madden, E. (2014). Conservation in a wicked complex world; challenges and solutions. Conservation Letters, 7(3), 271–277. https://doi.org/10.1111/conl.12050
Gilbert, T., Gardner, R., Kraaijeveld, A. R., & Riordan, P. (2017). Contributions of zoos and aquariums to reintroductions: Historical reintroduction efforts in the context of changing conservation perspectives. International Zoo Yearbook, 51(1), 15–31. https://doi.org/10.1111/izy.12159
Greene, L. K., Bornbusch, S. L., McKenney, E. A., Harris, R. L., Gorvetzian, S. R., Yoder, A. D., & Drea, C. M. (2019). The importance of scale in comparative microbiome research: New insights from the gut and glands of captive and wild lemurs. American Journal of Primatology, 81(10-11), e22974. https://doi.org/10.1002/ajp.22974
Heiman, M. L., & Greenway, F. L. (2016). A healthy gastrointestinal microbiome is dependent on dietary diversity. Molecular Metabolism, 5, 317–320. https://doi.org/10.1016/j.molmet.2016.02.005
Hooks, K. B., & Malley, A. O. (2017). Dysbiosis and Its discontents. Mbio, 8(5), 1–11. https://doi.org/10.1128/mBio.01492-17
Jules, K. R., Leaver, L. A., & Lea, S. E. G. (2008). The effects of captive experience on reintroduction survival in carnivores: A review and analysis. Biological Conservation, 141(2), 355–363. https://doi.org/10.1016/j.biocon.2007.11.007
Kleiman, D. G. (1989). Reintroduction of captive mammals for conservation. BioScience, 39(3), 152–161. https://doi.org/10.2307/1311025
Kohl, K. D., & Dearing, M. D. (2014). Wild-caught rodents retain a majority of their natural gut microbiota upon entrance into captivity. Environmental Microbiology Reports, 6(2), 191–195. https://doi.org/10.1111/1758-2229.12118
Kolodziejczyk, A. A., Zheng, D., & Elinav, E. (2019). Diet–microbiota interactions and personalized nutrition. Nature Reviews Microbiology, 17(12), 742–753. https://doi.org/10.1038/s41579-019-0256-8
Kołodziej-Sobocińska, M., Demiaszkiewicz, A. W., Pyziel, A. M., & Kowalczyk, R. (2018). Increased parasitic load in captive-released European bison (Bison bonasus) has important implications for reintroduction programs. EcoHealth, 15(2), 467–471, https://doi.org/10.1007/s10393-018-1327-4
Kong, F., Zhao, J., Han, S., Zeng, B. O., Yang, J., Si, X., … Li, Y. (2014). Characterization of the gut microbiota in the red panda (Ailurus fulgens). PLoS ONE, 9(2), 1–8. https://doi.org/10.1371/journal.pone.0087885
Krynak, K. L., Burke, D. J., Martin, R. A., & Dennis, P. M. (2017). Gut microbiome composition is associated with cardiac disease in zoo-housed western lowland gorillas (Gorilla gorilla gorilla). FEMS Microbiology Letters, 364(15), 1–4. https://doi.org/10.1093/femsle/fnx149
Lahti, L. et al (Bioconductor, 2017). Tools for microbiome analysis in R. Microbiome package version. Retrieved from http://microbiome.github.io/microbiome
Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 550. https://doi.org/10.1186/s13059-014-0550-8
Martinez-Mota, R., Kohl, K. D., Orr, T. J., & Dearing, D. M. (2019). Natural diets promote retention of the native gut microbiota in captive rodents. The ISME Journal, 14(1), 67–78. https://doi.org/10.1038/s41396-019-0497-6
Maurice, C. F., CL Knowles, S., Ladau, J., Pollard, K. S., Fenton, A., Pedersen, A. B., & Turnbaugh, P. J. (2015). Marked seasonal variation in the wild mouse gut microbiota. The ISME Journal, 9(11), 2423–2434. https://doi.org/10.1038/ismej.2015.53
McKenney, E. A., Koelle, K., Dunn, R. R., & Yoder, A. D. (2018). The ecosystem services of animal microbiomes. Molecular Ecology, 27(February), 2164–2172. https://doi.org/10.1111/mec.14532
McKenzie, V. J., Song, S. J., Delsuc, F., Prest, T. L., Oliverio, A. M., Korpita, T. M., … Knight, R. (2017). The effects of captivity on the mammalian gut microbiome. Integrative and Comparative Biology, 57(4), 690–704. https://doi.org/10.1093/icb/icx090
McMurdie, P. J., & Holmes, S. (2013). phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE, 8(4), e61217. https://doi.org/10.1371/journal.pone.0061217
McMurdie, P. J., & Holmes, S. (2014). Waste not, want not: Why rarefying microbiome data is inadmissible. PLoS Computational Biology, 10(4), e1003531. https://doi.org/10.1371/journal.pcbi.1003531
Meehan, C. J., & Beiko, R. G. (2014). A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome Biology and Evolution, 6(3), 703–713. https://doi.org/10.1093/gbe/evu050
Metcalf, J. L., Song, S. J., Morton, J. T., Weiss, S., Seguin-Orlando, A., Joly, F., … Orlando, L. (2017). Evaluating the impact of domestication and captivity on the horse gut microbiome. Scientific Reports, 7(1), 15497. https://doi.org/10.1038/s41598-017-15375-9
Oksanen, J., Blanchet, G. F., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., & Wagner, H. (2019). Vegan: Community ecology package. R package version 2.5-4. Retrieved from https://CRAN.R-project.org/package=vegan
Ormerod, K. L., Wood, D. L. A., Lachner, N., Gellatly, S. L., Daly, J. N., Parsons, J. D., … Hugenholtz, P. (2016). Genomic characterization of the uncultured Bacteroidales family S24–7 inhabiting the guts of homeothermic animals. Microbiome, 4, 1–17. https://doi.org/10.1186/s40168-016-0181-2
Paulson, J. N., Colin Stine, O., Bravo, H. C., & Pop, M. (2013). Differential abundance analysis for microbial marker-gene surveys. Nature Methods, 10(12), 1200–1202. https://doi.org/10.1038/nmeth.2658
Pruesse, E., Quast, C., Knittel, K., Fuchs, B. M., Ludwig, W. G., Peplies, J., & Glöckner, F. O. (2007). SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Research, 35, 7188–7196. https://doi.org/10.1093/nar/gkm864
R Core Team (2018). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/
Redford, K. H., Segre, J. A., Salafsky, N., Del Rio, C. M., & Mcaloose, D. (2012). Conservation and the Microbiome. Conservation Biology, 26(2), 195–197. https://doi.org/10.1111/j.1523-1739.2012.01829.x
Rosshart, S. P., Vassallo, B. G., Angeletti, D., Hutchinson, D. S., Morgan, A. P., Takeda, K., … Rehermann, B. (2017). Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell, 171(5), 1015–1028.e13. https://doi.org/10.1016/j.cell.2017.09.016
Schmidt, E., Mykytczuk, N., & Schulte-hostedde, A. I. (2019). Effects of the captive and wild environment on diversity of the gut microbiome of deer mice (Peromyscus maniculatus). The ISME Journal, 13(5), 1293. https://doi.org/10.1038/s41396-019-0345-8
Schulte-Hostedde, A. I., & Mastromonaco, G. F. (2015). Integrating evolution in the management of captive zoo populations. Evolutionary Applications, 8(5), 413–422. https://doi.org/10.1111/eva.12258
Seddon, P. J., Armstrong, D. P., & Maloney, R. F. (2007). Developing the science of reintroduction biology. Conservation Biology, 21(2), 303–312. https://doi.org/10.1111/j.1523-1739.2006.00627.x
Slansky, F. (2007). Insect/mammal associations: Effects of cuterebrid bot fly parasites on their hosts. Annual Review of Entomology, 52(1), 17–36. https://doi.org/10.1146/annurev.ento.51.110104.151017
Snyder, N. F. R., Derrickson, S. R., Beissinger, S. R., Wiley, J. W., Smith, T. B., Toone, W. D., & Miller, B. (1996). Limitations of captive breeding in endangered species recovery. Conservation Biology, 10(2), 338–348. https://doi.org/10.1046/j.1523-1739.1996.10020338.x
Sonnenburg, E. D., Smits, S. A., Tikhonov, M., Higginbottom, S. K., Wingreen, N. S., & Sonnenburg, J. L. (2016). Diet-induced extinctions in the gut microbiota compound over generations. Nature, 529(7585), 212–215. https://doi.org/10.1038/nature16504
Spor, A., Koren, O., & Ley, R. (2011). Unravelling the effects of the environment and host genotype on the gut microbiome. Nature Reviews Microbiology, 9(4), 279–290. https://doi.org/10.1038/nrmicro2540
Stumpf, R. M., Gomez, A., Amato, K. R., Yeoman, C. J., Polk, J. D., Wilson, B. A., … Leigh, S. R. (2016). Microbiomes, metagenomics, and primate conservation: New strategies, tools, and applications. Biological Conservation, 199, 56–66. https://doi.org/10.1016/j.biocon.2016.03.035
Suzuki, T. A. (2017). Links between natural variation in the microbiome and host fitness in wild mammals. Integrative and Comparative Biology, 57(4), 756–769. https://doi.org/10.1093/icb/icx104
Trevelline, B. K., Fontaine, S. S., Hartup, B. K., & Kohl, K. D. (2019). Conservation biology needs a microbial renaissance: A call for the consideration of host-associated microbiota in wildlife management practices. Proceedings of the Royal Society B: Biological Sciences, 286, 20182448. https://doi.org/10.1098/rspb.2018.2448
Viggers, K. L., Lindenmayer, D. B., & Spratt, D. M. (1993). The importance of disease in reintroduction programmes. Wildlife Research, 20, 687–698. https://doi.org/10.1071/WR9930687
Vijay-Kumar, M., Aitken, J. D., Carvalho, F. A., Cullender, T. C., Mwangi, S., Srinivasan, S., … Gewirtz, A. T. (2010). Metabolic syndrome and altered gut microbiota in mice lacking toll-like receptor 5. Science, 328(5975), 228–231. https://doi.org/10.1126/science.1179721
Wasimuddin, Menke, S., Melzheimer, J., Thalwitzer, S., Heinrich, S., Wachter, B., & Sommer, S. (2017). Gut microbiomes of free-ranging and captive Namibian cheetahs: Diversity, putative functions and occurrence of potential pathogens. Molecular Ecology, 26(20), 5515–5527. https://doi.org/10.1111/mec.14278
Weiss, S., Xu, Z. Z., Peddada, S., Amir, A., Bittinger, K., Gonzalez, A., … Knight, R. (2017). Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome, 5(27), 1–18. https://doi.org/10.1186/s40168-017-0237-y
West, A. G., Waite, D. W., Deines, P., Bourne, D. G., Digby, A., Mckenzie, V. J., & Taylor, M. W. (2019). The microbiome in threatened species conservation. Biological Conservation, 229(November 2018), 85–98. https://doi.org/10.1016/j.biocon.2018.11.016
Willoughby, J. R., & Christie, M. R. (2019). Long-term demographic and genetic effects of releasing captive-born individuals into the wild. Conservation Biology, 33(2), 377–388. https://doi.org/10.1111/cobi.13217
Wittebolle, L., Marzorati, M., Clement, L., Balloi, A., Daffonchio, D., Heylen, K., … Boon, N. (2009). Initial community evenness favours functionality under selective stress. Nature, 458(7238), 623–626. https://doi.org/10.1038/nature07840/
Wolff, J. O., Dueser, R. D., & Berry, K. S. (1985). Food habits of sympatric Peromyscus leucopus and Peromyscus maniculatus. Journal of Mammalogy, 66(4), 795–798. https://doi.org/10.2307/1380812
Yao, R., Xu, L., Hu, T., Chen, H., Qi, D., Gu, X., … Zhu, L. (2019). The “wildness” of the giant panda gut microbiome and its relevance to effective translocation. Global Ecology and Conservation, 18, e00644. https://doi.org/10.1016/j.gecco.2019.e00644