[en] Lipopeptides produced by Bacillus subtilis display many activities (surfactant, antimicrobial, and antitumoral), which make them interesting compounds with a wide range of applications. During the past years, several processes have been developed to enable their production and purification with suitable yield and purity. The already implemented processes mainly end with a critical drying step, which is currently achieved by freeze-drying. In this study, the possibility to replace this freeze-drying step with a spray-drying one, more suited to industrial applications, was analyzed. After evaluating their thermal resistance, we have developed a spray-drying methodology applicable for the three lipopeptides families produced by B. subtilis, i.e., surfactin, mycosubtilin (iturin family), and plipastatin (fengycin family). For each lipopeptide, the spray-drying procedure was applied at three steps of the purification process by ultrafiltration (supernatant, diafiltered solution, and pre-purified fraction). The analysis of the activities of each spray-dried lipopeptide showed that this drying method is not decreasing its antimicrobial and biosurfactant properties. The methodology developed in this study enabled for the first time the spray-drying of surfactin, without adjuvants' addition and regardless of the purification step considered. In the case of fengycin and mycosubtilin, only diafiltered solution and purified fraction could be successfully spray-dried without the addition of adjuvant. Maltodextrin addition was also investigated as the solution for the direct drying of supernatant. As expected, the performances of the spray-drying step and the purity of the powder obtained are highly related to the purification step at which the product was dried. Interestingly, the impact of mycosubtilin concentration on spray-drying yield was also evidenced.
Disciplines :
Biotechnology
Author, co-author :
Vassaux, Antoine ; Université de Liège - ULiège ; Université de Lille, UMRt BioEcoAgro 1158-INRAE, Équipe Métabolites Secondaires d'Origine Microbienne, Institut Charles Viollette, Lille, France
Rannou, Marie; Université de Lille, UMRt BioEcoAgro 1158-INRAE, Équipe Métabolites Secondaires d'Origine Microbienne, Institut Charles Viollette, Lille, France
Peers, Soline; LIPOFABRIK, Villeneuve d'Ascq, France
Daboudet, Théo; Université de Lille, UMRt BioEcoAgro 1158-INRAE, Équipe Métabolites Secondaires d'Origine Microbienne, Institut Charles Viollette, Lille, France
Jacques, Philippe ; Université de Liège - ULiège > Département GxABT > Microbial, food and biobased technologies ; LIPOFABRIK, Villeneuve d'Ascq, France
Coutte, François; Université de Lille, UMRt BioEcoAgro 1158-INRAE, Équipe Métabolites Secondaires d'Origine Microbienne, Institut Charles Viollette, Lille, France ; LIPOFABRIK, Villeneuve d'Ascq, France
Language :
English
Title :
Impact of the Purification Process on the Spray-Drying Performances of the Three Families of Lipopeptide Biosurfactant Produced by Bacillus subtilis.
Interreg Bio-Based Industries Joint Undertaking FP7 Research for the Benefit of SMEs
Funding text :
This work was supported by the project ?BioSMART?Bio-based smart packaging for enhanced preservation of food quality??Grant agreement No. 745762, funded by the Bio-based Industries Joint Undertaking (BBI-JU) under the European Union?s Horizon 2020 Research and Innovation Programme. This work was also supported by the Universities of Lille and Li?ge from the European INTERREG V SmartBioControl/BioProd project and the Charles Viollette Institute by the ALIBIOTECH program funding administered by the Hauts-de-France Region and for Lipofabrik by the SME Instrument Grant agreement No. 849713 under the European Union?s Horizon 2020 Research and Innovation Programme. Met steun van het europees fonds voor regionale ontwikkeling. Avec le soutien du fonds europ?en de d?veloppement r?gional.This work was supported by the project “BioSMART—Bio-based smart packaging for enhanced preservation of food quality”—Grant agreement No. 745762, funded by the Bio-based Industries Joint Undertaking (BBI-JU) under the European Union’s Horizon 2020 Research and Innovation Programme. This work was also supported by the Universities of Lille and Liège from the European INTERREG V SmartBioControl/BioProd project and the Charles Viollette Institute by the ALIBIOTECH program funding administered by the Hauts-de-France Region and for Lipofabrik by the SME Instrument Grant agreement No. 849713 under the European Union’s Horizon 2020 Research and Innovation Programme. Met steun van het europees fonds voor regionale ontwikkeling. Avec le soutien du fonds européen de développement régional.
Abdel-Mawgoud A. M. Aboulwafa M. M. Hassouna N. A.-H. (2008). Characterization of Surfactin Produced by Bacillus Subtilis Isolate BS5. Appl. Biochem. Biotechnol. 150, 289–303. 10.1007/s12010-008-8153-z
Al-Wahaibi Y. Joshi S. Al-Bahry S. Elshafie A. Al-Bemani A. Shibulal B. (2014). Biosurfactant Production by Bacillus Subtilis B30 and its Application in Enhancing Oil Recovery. Colloids Surf. B: Biointerfaces 114, 324–333. 10.1016/j.colsurfb.2013.09.022
Ameri M. Maa Y.-F. (2007). Spray Drying of Biopharmaceuticals: Stability and Process Considerations. Drying Tech. 24, 763–768. 10.1080/03602550600685275
Barcelos G. S. Dias L. C. Fernandes P. L. Fernandes R. d. C. R. Borges A. C. Kalks K. H. et al. (2014). Spray Drying as a Strategy for Biosurfactant Recovery, Concentration and Storage. Springerplus 3, 1–9. 10.1186/2193-1801-3-49
Béchet M. Castéra-Guy J. Guez J.-S. Chihib N.-E. Coucheney F. Coutte F. et al. (2013). Production of a Novel Mixture of Mycosubtilins by Mutants of Bacillus Subtilis. Bioresour. Tech. 145, 264–270. 10.1016/j.biortech.2013.03.123
Ben Ayed H. Bardaa S. Moalla D. Jridi M. Maalej H. Sahnoun Z. et al. (2015). Wound Healing and In Vitro Antioxidant Activities of Lipopeptides Mixture Produced by Bacillus Mojavensis A21. Process Biochem. 50, 1023–1030. 10.1016/J.PROCBIO.2015.02.019
Caboche S. Pupin M. Leclere V. Fontaine A. Jacques P. Kucherov G. (2008). NORINE: A Database of Nonribosomal Peptides. Nucleic Acids Res. 36, D326–D331. 10.1093/nar/gkm792
Chen C.-Y. Baker S. C. Darton R. C. (2006). Continuous Production of Biosurfactant with Foam Fractionation. J. Chem. Technol. Biotechnol. 81, 1915–1922. 10.1002/jctb.1624
Cooper D. G. Macdonald C. R. Duff S. J. B. Kosaric N. (1981). Enhanced Production of Surfactin from Bacillus Subtilis by Continuous Product Removal and Metal Cation Additions. Appl. Environ. Microbiol. 42, 408–412. 10.1128/AEM.42.3.408-412.1981
Coutte F. Leclère V. Béchet M. Guez J. S. Lecouturier D. Chollet‐Imbert M. et al. (2010a). Effect of Pps Disruption and Constitutive Expression of srfA on Surfactin Productivity, Spreading and Antagonistic Properties of Bacillus Subtilis 168 Derivatives. J. Appl. Microbiol. 109, 480–491. 10.1111/j.1365-2672.2010.04683.x
Coutte F. Lecouturier D. Ait Yahia S. Leclère V. Béchet M. Jacques P. et al. (2010b). Production of Surfactin and Fengycin by Bacillus Subtilis in a Bubbleless Membrane Bioreactor. Appl. Microbiol. Biotechnol. 87, 499–507. 10.1007/s00253-010-2504-8
Coutte F. Lecouturier D. Dimitrov K. Guez J.-S. Delvigne F. Dhulster P. et al. (2017). Microbial Lipopeptide Production and Purification Bioprocesses, Current Progress and Future Challenges. Biotechnol. J. 12 (7), 1600566. 10.1002/biot.201600566
Coutte F. Lecouturier D. Leclère V. Béchet M. Jacques P. Dhulster P. (2013). New Integrated Bioprocess for the Continuous Production, Extraction and Purification of Lipopeptides Produced by Bacillus Subtilis in Membrane Bioreactor. Process Biochem. 48, 25–32. 10.1016/J.PROCBIO.2012.10.005
Czinkóczky R. Németh Á. (2020). Techno-economic Assessment of Bacillus Fermentation to Produce Surfactin and Lichenysin. Biochem. Eng. J. 163, 107719. 10.1016/j.bej.2020.107719
Deleu M. Lorent J. Lins L. Brasseur R. Braun N. El Kirat K. et al. (2013). Effects of Surfactin on Membrane Models Displaying Lipid Phase Separation. Biochim. Biophys. Acta (Bba) - Biomembranes 1828, 801–815. 10.1016/J.BBAMEM.2012.11.007
Demain A. L. (2014). Importance of Microbial Natural Products and the Need to Revitalize Their Discovery. J. Ind. Microbiol. Biotechnol. 41, 185–201. 10.1007/s10295-013-1325-z
Deravel J. Lemière S. Coutte F. Krier F. Van Hese N. Béchet M. et al. (2014). Mycosubtilin and Surfactin Are Efficient, Low Ecotoxicity Molecules for the Biocontrol of Lettuce Downy Mildew. Appl. Microbiol. Biotechnol. 98, 6255–6264. 10.1007/s00253-014-5663-1
Desmyttere H. Deweer C. Muchembled J. Sahmer K. Jacquin J. Coutte F. et al. (2019). Antifungal Activities of bacillus Subtilis Lipopeptides to Two Venturia Inaequalis Strains Possessing Different Tebuconazole Sensitivity. Front. Microbiol. 10, 1. 10.3389/fmicb.2019.02327
Eeman M. Olofsson G. Sparr E. Nasir M. N. Nylander T. Deleu M. (2014). Interaction of Fengycin with Stratum Corneum Mimicking Model Membranes: A Calorimetry Study. Colloids Surf. B: Biointerfaces 121, 27–35. 10.1016/J.COLSURFB.2014.05.019
Elversson J. Millqvist-Fureby A. (2005). Particle Size and Density in Spray Drying-Effects of Carbohydrate Properties. J. Pharm. Sci. 94, 2049–2060. 10.1002/JPS.20418
Gong G. Zheng Z. Chen H. Yuan C. Wang P. Yao L. et al. (2009). Enhanced Production of Surfactin by Bacillus Subtilis E8 Mutant Obtained by Ion Beam Implantation. Food Technol. Biotechnol. 47, 27–31.
Grau A. Gómez-Fernández J. C. Peypoux F. Ortiz A. (2001). Aggregational Behavior of Aqueous Dispersions of the Antifungal Lipopeptide Iturin A. Peptides 22, 1–5. 10.1016/S0196-9781(00)00350-8
Guez J.-S. Vassaux A. Larroche C. Jacques P. Coutte F. (2021). New Continuous Process for the Production of Lipopeptide Biosurfactants in Foam Overflowing Bioreactor. Front. Bioeng. Biotechnol. 9, 357. 10.3389/FBIOE.2021.678469
Hamley I. W. Dehsorkhi A. Jauregi P. Seitsonen J. Ruokolainen J. Coutte F. et al. (2013). Self-assembly of Three Bacterially-Derived Bioactive Lipopeptides. Soft Matter 9, 9572–9578. 10.1039/C3SM51514A
Jacques P. (2011). Surfactin and Other Lipopeptides from Bacillus Spp. Berlin, Heidelberg: Springer, 57–91. 10.1007/978-3-642-14490-5_3
Jauregi P. Coutte F. Catiau L. Lecouturier D. Jacques P. (2013). Micelle Size Characterization of Lipopeptides Produced by B. Subtilis and Their Recovery by the Two-step Ultrafiltration Process. Sep. Purif. Tech. 104, 175–182. 10.1016/J.SEPPUR.2012.11.017
Keshani S. Daud W. R. W. Nourouzi M. M. Namvar F. Ghasemi M. (2015). Spray Drying: An Overview on wall Deposition, Process and Modeling. J. Food Eng. 146, 152–162. 10.1016/J.JFOODENG.2014.09.004
Kourmentza K. Gromada X. Michael N. Degraeve C. Vanier G. Ravallec R. et al. (2021). Antimicrobial Activity of Lipopeptide Biosurfactants against Foodborne Pathogen and Food Spoilage Microorganisms and Their Cytotoxicity. Front. Microbiol. 11, 1. 10.3389/fmicb.2020.561060
Leclère V. Marti R. Béchet M. Fickers P. Jacques P. (2006). The Lipopeptides Mycosubtilin and Surfactin Enhance Spreading of Bacillus Subtilis Strains by Their Surface-Active Properties. Arch. Microbiol. 186, 475–483. 10.1007/s00203-006-0163-z
Lee G. (2002). Spray-drying of Proteins. Pharm. Biotechnol. 13, 135–158. 10.1007/978-1-4615-0557-0_6
Lee J. K. M. Taip F. S. Abdullah Z. (2018). Effectiveness of Additives in spray Drying Performance: a Review. Food Res. 2, 486–499. 10.26656/FR.2017.2(6).134
Loiseau C. Schlusselhuber M. Bigot R. Bertaux J. Berjeaud J.-M. Verdon J. (2015). Surfactin from Bacillus Subtilis Displays an Unexpected Anti-Legionella Activity. Appl. Microbiol. Biotechnol. 99, 5083–5093. 10.1007/S00253-014-6317-Z
Maget-Dana R. Thimon L. Peypoux F. Ptak M. (1992). Interfacial Properties of the Antifungal Iturins on Various Electrolyte Solutions. J. Colloid Interf. Sci. 149, 174–183. 10.1016/0021-9797(92)90402-8
Mantil E. Buznytska I. Daly G. Ianoul A. Avis T. J. (2019). Role of Lipid Composition in the Interaction and Activity of the Antimicrobial Compound Fengycin with Complex Membrane Models. J. Membr. Biol. 252, 627–638. 10.1007/s00232-019-00100-6
Mejri S. Siah A. Coutte F. Magnin-Robert M. Randoux B. Tisserant B. et al. (2018). Biocontrol of the Wheat Pathogen Zymoseptoria Tritici Using Cyclic Lipopeptides from Bacillus Subtilis. Environ. Sci. Pollut. Res. 25, 29822–29833. 10.1007/s11356-017-9241-9
Meng X. Yu J. Yu M. Yin X. Liu Y. (2015). Dry Flowable Formulations of Antagonistic Bacillus Subtilis Strain T429 by spray Drying to Control rice Blast Disease. Biol. Control. 85, 46–51. 10.1016/j.biocontrol.2015.03.004
Ongena M. Jacques P. (2008). Bacillus Lipopeptides: Versatile Weapons for Plant Disease Biocontrol. Trends Microbiol. 16, 115–125. 10.1016/j.tim.2007.12.009
Ongena M. Jourdan E. Adam A. Paquot M. Brans A. Joris B. et al. (2007). Surfactin and Fengycin Lipopeptides of Bacillus Subtilis as Elicitors of Induced Systemic Resistance in Plants. Environ. Microbiol. 9, 1084–1090. 10.1111/j.1462-2920.2006.01202.x
Sen R. Swaminathan T. (2005). Characterization of Concentration and Purification Parameters and Operating Conditions for the Small-Scale Recovery of Surfactin. Process Biochem. 40, 2953–2958. 10.1016/J.PROCBIO.2005.01.014
Thimon L. Peyoux F. Maget-Dana R. Michel G. (1992). Surface-active Properties of Antifungal Lipopeptides Produced byBacillus Subtilis. J. Am. Oil Chem. Soc. 69, 92–93. 10.1007/BF02635884
Vardanega R. Muzio A. F. V. Silva E. K. Prata A. S. Meireles M. A. A. (2019). Obtaining Functional Powder tea from Brazilian Ginseng Roots: Effects of Freeze and spray Drying Processes on Chemical and Nutritional Quality, Morphological and Redispersion Properties. Food Res. Int. 116, 932–941. 10.1016/j.foodres.2018.09.030
Wang Y. Zhu X. Bie X. Lu F. Zhang C. Yao S. et al. (2014). Preparation of Microcapsules Containing Antimicrobial Lipopeptide from Bacillus Amyloliquefaciens ES-2 by spray Drying. LWT - Food Sci. Tech. 56, 502–507. 10.1016/j.lwt.2013.11.041
Wei Y.-H. Wang L.-C. Chen W.-C. Chen S.-Y. (2010). Production and Characterization of Fengycin by Indigenous Bacillus Subtilis F29-3 Originating from a Potato Farm. Ijms 11, 4526–4538. 10.3390/ijms11114526
Yánez-Mendizábal V. Viñas I. Usall J. Torres R. Solsona C. Abadias M. et al. (2012). Formulation Development of the Biocontrol Agent Bacillus Subtilis Strain CPA-8 by spray-drying. J. Appl. Microbiol. 112, 954–965. 10.1111/j.1365-2672.2012.05258.x
Yu C. Wanli C. Dian H. Longyu Z. Minmin C. Da L. et al. (2017). Preparation and Characterization of Iturin A Microcapsules in Sodium Alginate/poly(γ-Glutamic Acid) by spray Drying. Int. J. Polymeric Mater. Polymeric Biomater. 66, 479–484. 10.1080/00914037.2016.1233417