[en] Evolution sculpts the olfactory nervous system in response to the unique sensory challenges facing each species. In vertebrates, dramatic and diverse adaptations to the chemical environment are possible because of the hierarchical structure of the olfactory receptor (OR) gene superfamily: expansion or contraction of OR subfamilies accompanies major changes in habitat and lifestyle; independent selection on OR subfamilies can permit local adaptation or conserved chemical communication; and genetic variation in single OR genes can alter odor percepts and behaviors driven by precise chemical cues. However, this genetic flexibility contrasts with the relatively fixed neural architecture of the vertebrate olfactory system, which requires that new olfactory receptors integrate into segregated and functionally distinct neural pathways. This organization allows evolution to couple critical chemical signals with selectively advantageous responses, but also constrains relationships between olfactory receptors and behavior. The coevolution of the OR repertoire and the olfactory system therefore reveals general principles of how the brain solves specific sensory problems and how it adapts to new ones.
Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
Bear, Daniel M; Department of Neurobiology, Harvard Medical School, Center for Brain
Lassance, Jean-Marc ; Université de Liège - ULiège > Département de gestion vétérinaire des Ressources Animales (DRA) > Génomique animale ; Departments of Molecular and Cellular Biology and Organismic and
Hoekstra, Hopi E; Departments of Molecular and Cellular Biology and Organismic and
Datta, Sandeep Robert; Department of Neurobiology, Harvard Medical School, Center for Brain
Language :
English
Title :
The Evolving Neural and Genetic Architecture of Vertebrate Olfaction.
Publication date :
24 October 2016
Journal title :
Current Biology
eISSN :
1879-0445
Volume :
26
Issue :
20
Pages :
R1039-R1049
Peer reviewed :
Peer reviewed
Funding number :
R01 DC011558/DC/NIDCD NIH HHS/United States; HHMI/Howard Hughes Medical Institute/United States
Commentary :
Copyright (c) 2016 Elsevier Ltd. All rights reserved.
1 Wyatt, T.D., Introduction to chemical signaling in vertebrates and invertebrates. Mucignat-Caretta, C., (eds.) Neurobiology of Chemical Communication, 2014, Boca Raton, FL.
2 Meister, M., On the dimensionality of odor space. Elife, 4, 2015, e07865.
3 Bargmann, C.I., Comparative chemosensation from receptors to ecology. Nature 444 (2006), 295–301.
5 Zhang, X., Firestein, S., The olfactory receptor gene superfamily of the mouse. Nat. Neurosci. 5 (2002), 124–133.
6 Touhara, K., Vosshall, L.B., Sensing odorants and pheromones with chemosensory receptors. Annu. Rev. Physiol. 71 (2009), 307–332.
7 Finlay, B.L., Darlington, R.B., Linked regularities in the development and evolution of mammalian brains. Science 268 (1995), 1578–1584.
8 Meisami, E., Bhatnagar, K.P., Structure and diversity in mammalian accessory olfactory bulb. Microsc. Res. Tech. 43 (1998), 476–499.
9 Yopak, K.E., Lisney, T.J., Collin, S.P., Not all sharks are “swimming noses”: variation in olfactory bulb size in cartilaginous fishes. Brain Struct. Funct. 220 (2015), 1127–1143.
10 Manzini, I., Korsching, S., The peripheral olfactory system of vertebrates: molecular, structural and functional basics of the sense of smell. e-Neuroforum 2 (2011), 68–77.
12 Buck, L., Axel, R., A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65 (1991), 175–187.
13 Ressler, K.J., Sullivan, S.L., Buck, L.B., A zonal organization of odorant receptor gene expression in the olfactory epithelium. Cell 73 (1993), 597–609.
14 Johnson, M.A., Tsai, L., Roy, D.S., Valenzuela, D.H., Mosley, C., Magklara, A., Lomvardas, S., Liberles, S.D., Barnea, G., Neurons expressing trace amine-associated receptors project to discrete glomeruli and constitute an olfactory subsystem. Proc. Natl. Acad. Sci. USA 109 (2012), 13410–13415.
15 Dulac, C., Axel, R., A novel family of genes encoding putative pheromone receptors in mammals. Cell 83 (1995), 195–206.
16 Herrada, G., Dulac, C., A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution. Cell 90 (1997), 763–773.
17 Ryba, N.J., Tirindelli, R., A new multigene family of putative pheromone receptors. Neuron 19 (1997), 371–379.
18 Silvotti, L., Moiani, A., Gatti, R., Tirindelli, R., Combinatorial co-expression of pheromone receptors, V2Rs. J. Neurochem. 103 (2007), 1753–1763.
19 Riviere, S., Challet, L., Fluegge, D., Spehr, M., Rodriguez, I., Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature 459 (2009), 574–577.
20 Liberles, S.D., Horowitz, L.F., Kuang, D., Contos, J.J., Wilson, K.L., Siltberg-Liberles, J., Liberles, D.A., Buck, L.B., Formyl peptide receptors are candidate chemosensory receptors in the vomeronasal organ. Proc. Natl. Acad. Sci. USA 106 (2009), 9842–9847.
21 Mombaerts, P., Genes and ligands for odorant, vomeronasal and taste receptors. Nat. Rev. Neurosci. 5 (2004), 263–278.
22 Lin da, Y., Shea, S.D., Katz, L.C., Representation of natural stimuli in the rodent main olfactory bulb. Neuron 50 (2006), 937–949.
23 Sosulski, D.L., Bloom, M.L., Cutforth, T., Axel, R., Datta, S.R., Distinct representations of olfactory information in different cortical centres. Nature 472 (2011), 213–216.
24 Choi, G.B., Stettler, D.D., Kallman, B.R., Bhaskar, S.T., Fleischmann, A., Axel, R., Driving opposing behaviors with ensembles of piriform neurons. Cell 146 (2011), 1004–1015.
25 Root, C.M., Denny, C.A., Hen, R., Axel, R., The participation of cortical amygdala in innate, odour-driven behaviour. Nature 515 (2014), 269–273.
26 Mohedano-Moriano, A., Pro-Sistiaga, P., Ubeda-Banon, I., Crespo, C., Insausti, R., Martinez-Marcos, A., Segregated pathways to the vomeronasal amygdala: differential projections from the anterior and posterior divisions of the accessory olfactory bulb. Eur. J. Neurosci. 25 (2007), 2065–2080.
27 Hussain, A., Saraiva, L.R., Korsching, S.I., Positive Darwinian selection and the birth of an olfactory receptor clade in teleosts. Proc. Natl. Acad. Sci. USA 106 (2009), 4313–4318.
28 Saraiva, L.R., Ahuja, G., Ivandic, I., Syed, A.S., Marioni, J.C., Korsching, S.I., Logan, D.W., Molecular and neuronal homology between the olfactory systems of zebrafish and mouse. Sci. Rep., 5, 2015, 11487.
29 Saraiva, L.R., Korsching, S.I., A novel olfactory receptor gene family in teleost fish. Genome. Res. 17 (2007), 1448–1457.
30 Weth, F., Nadler, W., Korsching, S., Nested expression domains for odorant receptors in zebrafish olfactory epithelium. Proc. Natl. Acad. Sci. USA 93 (1996), 13321–13326.
31 Sato, Y., Miyasaka, N., Yoshihara, Y., Hierarchical regulation of odorant receptor gene choice and subsequent axonal projection of olfactory sensory neurons in zebrafish. J. Neurosci. 27 (2007), 1606–1615.
32 Oka, Y., Saraiva, L.R., Korsching, S.I., Crypt neurons express a single V1R-related ora gene. Chem. Senses. 37 (2012), 219–227.
33 Sato, Y., Miyasaka, N., Yoshihara, Y., Mutually exclusive glomerular innervation by two distinct types of olfactory sensory neurons revealed in transgenic zebrafish. J. Neurosci. 25 (2005), 4889–4897.
34 Braubach, O.R., Fine, A., Croll, R.P., Distribution and functional organization of glomeruli in the olfactory bulbs of zebrafish (Danio rerio). J. Comp. Neurol. 520 (2012), 2317–2339 Spc2311.
38 Niimura, Y., Matsui, A., Touhara, K., Extreme expansion of the olfactory receptor gene repertoire in African elephants and evolutionary dynamics of orthologous gene groups in 13 placental mammals. Genome. Res. 24 (2014), 1485–1496.
39 Sharon, D., Glusman, G., Pilpel, Y., Khen, M., Gruetzner, F., Haaf, T., Lancet, D., Primate evolution of an olfactory receptor cluster: diversification by gene conversion and recent emergence of pseudogenes. Genomics 61 (1999), 24–36.
40 Neuhaus, E.M., Zhang, W., Gelis, L., Deng, Y., Noldus, J., Hatt, H., Activation of an olfactory receptor inhibits proliferation of prostate cancer cells. J. Biol. Chem. 284 (2009), 16218–16225.
41 Niimura, Y., Nei, M., Evolutionary dynamics of olfactory and other chemosensory receptor genes in vertebrates. J. Hum. Genet. 51 (2006), 505–517.
44 Liman, E.R., Innan, H., Relaxed selective pressure on an essential component of pheromone transduction in primate evolution. Proc. Natl. Acad. Sci. USA 100 (2003), 3328–3332.
45 Gilad, Y., Przeworski, M., Lancet, D., Loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates. PLoS Biol., 2, 2004, E5.
46 Lucas, P.W., Dominy, N.J., Riba-Hernandez, P., Stoner, K.E., Yamashita, N., Loria-Calderon, E., Petersen-Pereira, W., Rojas-Duran, Y., Salas-Pena, R., Solis-Madrigal, S., et al. Evolution and function of routine trichromatic vision in primates. Evolution 57 (2003), 2636–2643.
47 Dominy, N.J., Lucas, P.W., Ecological importance of trichromatic vision to primates. Nature 410 (2001), 363–366.
48 Matsui, A., Go, Y., Niimura, Y., Degeneration of olfactory receptor gene repertories in primates: no direct link to full trichromatic vision. Mol. Biol. Evol. 27 (2010), 1192–1200.
49 Zhao, H., Xu, D., Zhang, S., Zhang, J., Widespread losses of vomeronasal signal transduction in bats. Mol. Biol. Evol. 28 (2011), 7–12.
50 Niimura, Y., Nei, M., Extensive gains and losses of olfactory receptor genes in mammalian evolution. PLoS One, 2, 2007, e708.
51 Niimura, Y., Nei, M., Evolutionary dynamics of olfactory receptor genes in fishes and tetrapods. Proc. Natl. Acad. Sci. USA 102 (2005), 6039–6044.
53 Niimura, Y., Evolutionary dynamics of olfactory receptor genes in chordates: interaction between environments and genomic contents. Hum. Genomics 4 (2009), 107–118.
54 Freitag, J., Ludwig, G., Andreini, I., Rossler, P., Breer, H., Olfactory receptors in aquatic and terrestrial vertebrates. J. Comp. Physiol. A 183 (1998), 635–650.
55 Freitag, J., Krieger, J., Strotmann, J., Breer, H., Two classes of olfactory receptors in Xenopus laevis. Neuron 15 (1995), 1383–1392.
56 Mezler, M., Fleischer, J., Breer, H., Characteristic features and ligand specificity of the two olfactory receptor classes from Xenopus laevis. J. Exp. Biol. 204 (2001), 2987–2997.
57 Li, Q., Tachie-Baffour, Y., Liu, Z., Baldwin, M.W., Kruse, A.C., Liberles, S.D., Non-classical amine recognition evolved in a large clade of olfactory receptors. Elife, 4, 2015, e10441.
58 Hussain, A., Saraiva, L.R., Ferrero, D.M., Ahuja, G., Krishna, V.S., Liberles, S.D., Korsching, S.I., High-affinity olfactory receptor for the death-associated odor cadaverine. Proc. Natl. Acad. Sci. USA 110 (2013), 19579–19584.
60 Rolen, S.H., Sorensen, P.W., Mattson, D., Caprio, J., Polyamines as olfactory stimuli in the goldfish Carassius auratus. J. Exp. Biol. 206 (2003), 1683–1696.
61 Nei, M., Niimura, Y., Nozawa, M., The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. Nat. Rev. Genet. 9 (2008), 951–963.
62 Syed, A.S., Sansone, A., Nadler, W., Manzini, I., Korsching, S.I., Ancestral amphibian v2rs are expressed in the main olfactory epithelium. Proc. Natl. Acad. Sci. USA 110 (2013), 7714–7719.
63 Kikuyama, S., Yamamoto, K., Iwata, T., Toyoda, F., Peptide and protein pheromones in amphibians. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 132 (2002), 69–74.
64 Grus, W.E., Shi, P., Zhang, J., Largest vertebrate vomeronasal type 1 receptor gene repertoire in the semiaquatic platypus. Mol. Biol. Evol. 24 (2007), 2153–2157.
66 Hayden, S., Bekaert, M., Goodbla, A., Murphy, W.J., Davalos, L.M., Teeling, E.C., A cluster of olfactory receptor genes linked to frugivory in bats. Mol. Biol. Evol. 31 (2014), 917–927.
67 Khan, I., Yang, Z., Maldonado, E., Li, C., Zhang, G., Gilbert, M.T., Jarvis, E.D., O'Brien, S.J., Johnson, W.E., Antunes, A., Olfactory receptor subgenomes linked with broad ecological adaptations in Sauropsida. Mol. Biol. Evol. 32 (2015), 2832–2843.
68 Yang, H., Shi, P., Zhang, Y.P., Zhang, J., Composition and evolution of the V2r vomeronasal receptor gene repertoire in mice and rats. Genomics 86 (2005), 306–315.
69 Papes, F., Logan, D.W., Stowers, L., The vomeronasal organ mediates interspecies defensive behaviors through detection of protein pheromone homologs. Cell 141 (2010), 692–703.
70 Chamero, P., Marton, T.F., Logan, D.W., Flanagan, K., Cruz, J.R., Saghatelian, A., Cravatt, B.F., Stowers, L., Identification of protein pheromones that promote aggressive behaviour. Nature 450 (2007), 899–902.
71 Hoppe, R., Lambert, T.D., Samollow, P.B., Breer, H., Strotmann, J., Evolution of the “OR37” subfamily of olfactory receptors: a cross-species comparison. J. Mol. Evol. 62 (2006), 460–472.
72 Hoppe, R., Breer, H., Strotmann, J., Organization and evolutionary relatedness of OR37 olfactory receptor genes in mouse and human. Genomics 82 (2003), 355–364.
73 Bautze, V., Bar, R., Fissler, B., Trapp, M., Schmidt, D., Beifuss, U., Bufe, B., Zufall, F., Breer, H., Strotmann, J., Mammalian-specific OR37 receptors are differentially activated by distinct odorous fatty aldehydes. Chem. Senses. 37 (2012), 479–493.
74 Strotmann, J., Conzelmann, S., Beck, A., Feinstein, P., Breer, H., Mombaerts, P., Local permutations in the glomerular array of the mouse olfactory bulb. J. Neurosci. 20 (2000), 6927–6938.
75 Bader, A., Klein, B., Breer, H., Strotmann, J., Connectivity from OR37 expressing olfactory sensory neurons to distinct cell types in the hypothalamus. Front Neural Circuits, 6, 2012, 84.
76 Dulac, C., Torello, A.T., Molecular detection of pheromone signals in mammals: from genes to behaviour. Nat. Rev. Neurosci. 4 (2003), 551–562.
77 Lin, D.Y., Zhang, S.Z., Block, E., Katz, L.C., Encoding social signals in the mouse main olfactory bulb. Nature 434 (2005), 470–477.
78 Dekker, T., Ibba, I., Siju, K.P., Stensmyr, M.C., Hansson, B.S., Olfactory shifts parallel superspecialism for toxic fruit in Drosophila melanogaster sibling, D. sechellia. Curr. Biol. 16 (2006), 101–109.
79 Kurtovic, A., Widmer, A., Dickson, B.J., A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature 446 (2007), 542–546.
80 Sakurai, T., Mitsuno, H., Mikami, A., Uchino, K., Tabuchi, M., Zhang, F., Sezutsu, H., Kanzaki, R., Targeted disruption of a single sex pheromone receptor gene completely abolishes in vivo pheromone response in the silkmoth. Sci. Rep., 5, 2015, 11001.
81 Stensmyr, M.C., Dweck, H.K., Farhan, A., Ibba, I., Strutz, A., Mukunda, L., Linz, J., Grabe, V., Steck, K., Lavista-Llanos, S., et al. A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila. Cell 151 (2012), 1345–1357.
82 Haga, S., Hattori, T., Sato, T., Sato, K., Matsuda, S., Kobayakawa, R., Sakano, H., Yoshihara, Y., Kikusui, T., Touhara, K., The male mouse pheromone ESP1 enhances female sexual receptive behaviour through a specific vomeronasal receptor. Nature 466 (2010), 118–122.
83 Ferrero, D.M., Moeller, L.M., Osakada, T., Horio, N., Li, Q., Roy, D.S., Cichy, A., Spehr, M., Touhara, K., Liberles, S.D., A juvenile mouse pheromone inhibits sexual behaviour through the vomeronasal system. Nature 502 (2013), 368–371.
84 Dewan, A., Pacifico, R., Zhan, R., Rinberg, D., Bozza, T., Non-redundant coding of aversive odours in the main olfactory pathway. Nature 497 (2013), 486–489.
85 Ferrero, D.M., Lemon, J.K., Fluegge, D., Pashkovski, S.L., Korzan, W.J., Datta, S.R., Spehr, M., Fendt, M., Liberles, S.D., Detection and avoidance of a carnivore odor by prey. Proc. Natl. Acad. Sci. USA 108 (2011), 11235–11240.
86 Gimelbrant, A.A., Skaletsky, H., Chess, A., Selective pressures on the olfactory receptor repertoire since the human-chimpanzee divergence. Proc. Natl. Acad. Sci. USA 101 (2004), 9019–9022.
87 Keller, A., Zhuang, H., Chi, Q., Vosshall, L.B., Matsunami, H., Genetic variation in a human odorant receptor alters odour perception. Nature 449 (2007), 468–472.
88 Jaeger, S.R., McRae, J.F., Bava, C.M., Beresford, M.K., Hunter, D., Jia, Y., Chheang, S.L., Jin, D., Peng, M., Gamble, J.C., et al. A Mendelian trait for olfactory sensitivity affects odor experience and food selection. Curr. Biol. 23 (2013), 1601–1605.
90 Gelstein, S., Yeshurun, Y., Rozenkrantz, L., Shushan, S., Frumin, I., Roth, Y., Sobel, N., Human tears contain a chemosignal. Science 331 (2011), 226–230.
91 Varendi, H., Porter, R.H., Breast odour as the only maternal stimulus elicits crawling towards the odour source. Acta. Paediatr. 90 (2001), 372–375.
92 Schaal, B., Coureaud, G., Langlois, D., Ginies, C., Semon, E., Perrier, G., Chemical and behavioural characterization of the rabbit mammary pheromone. Nature 424 (2003), 68–72.
93 Rokni, D., Hemmelder, V., Kapoor, V., Murthy, V.N., An olfactory cocktail party: figure-ground segregation of odorants in rodents. Nat. Neurosci. 17 (2014), 1225–1232.
94 Ahuja, G., Ivandic, I., Salturk, M., Oka, Y., Nadler, W., Korsching, S.I., Zebrafish crypt neurons project to a single, identified mediodorsal glomerulus. Sci. Rep., 3, 2013, 2063.
95 Behrens, M., Frank, O., Rawel, H., Ahuja, G., Potting, C., Hofmann, T., Meyerhof, W., Korsching, S., ORA1, a zebrafish olfactory receptor ancestral to all mammalian V1R genes, recognizes 4-hydroxyphenylacetic acid, a putative reproductive pheromone. J. Biol. Chem. 289 (2014), 19778–19788.
96 Syed, A.S., Sansone, A., Roner, S., Bozorg Nia, S., Manzini, I., Korsching, S.I., Different expression domains for two closely related amphibian TAARs generate a bimodal distribution similar to neuronal responses to amine odors. Sci. Rep., 5, 2015, 13935.
97 Date-Ito, A., Ohara, H., Ichikawa, M., Mori, Y., Hagino-Yamagishi, K., Xenopus V1R vomeronasal receptor family is expressed in the main olfactory system. Chem. Senses. 33 (2008), 339–346.
98 Gliem, S., Syed, A.S., Sansone, A., Kludt, E., Tantalaki, E., Hassenklover, T., Korsching, S.I., Manzini, I., Bimodal processing of olfactory information in an amphibian nose: odor responses segregate into a medial and a lateral stream. Cell. Mol. Life. Sci. 70 (2013), 1965–1984.
99 Bozza, T., Vassalli, A., Fuss, S., Zhang, J.J., Weiland, B., Pacifico, R., Feinstein, P., Mombaerts, P., Mapping of class I and class II odorant receptors to glomerular domains by two distinct types of olfactory sensory neurons in the mouse. Neuron 61 (2009), 220–233.
100 Brechbuhl, J., Moine, F., Klaey, M., Nenniger-Tosato, M., Hurni, N., Sporkert, F., Giroud, C., Broillet, M.C., Mouse alarm pheromone shares structural similarity with predator scents. Proc. Natl. Acad. Sci. USA 110 (2013), 4762–4767.
101 Brechbuhl, J., Klaey, M., Broillet, M.C., Grueneberg ganglion cells mediate alarm pheromone detection in mice. Science 321 (2008), 1092–1095.
102 Grosmaitre, X., Fuss, S.H., Lee, A.C., Adipietro, K.A., Matsunami, H., Mombaerts, P., Ma, M., SR1, a mouse odorant receptor with an unusually broad response profile. J. Neurosci. 29 (2009), 14545–14552.
103 Grosmaitre, X., Santarelli, L.C., Tan, J., Luo, M., Ma, M., Dual functions of mammalian olfactory sensory neurons as odor detectors and mechanical sensors. Nat. Neurosci. 10 (2007), 348–354.
104 Greer, P.L., Bear, D.M., Lassance, J.M., Bloom, M.L., Tsukahara, T., Pashkovski, S.L., Masuda, F.K., Nowlan, A.C., Kirchner, R., Hoekstra, H.E., et al. A family of non-GPCR chemosensors defines an alternative logic for mammalian olfaction. Cell 165 (2016), 1734–1748.
105 Munger, S.D., Leinders-Zufall, T., McDougall, L.M., Cockerham, R.E., Schmid, A., Wandernoth, P., Wennemuth, G., Biel, M., Zufall, F., Kelliher, K.R., An olfactory subsystem that detects carbon disulfide and mediates food-related social learning. Curr. Biol. 20 (2010), 1438–1444.
106 Hu, J., Zhong, C., Ding, C., Chi, Q., Walz, A., Mombaerts, P., Matsunami, H., Luo, M., Detection of near-atmospheric concentrations of CO2 by an olfactory subsystem in the mouse. Science 317 (2007), 953–957.
107 Pacifico, R., Dewan, A., Cawley, D., Guo, C., Bozza, T., An olfactory subsystem that mediates high-sensitivity detection of volatile amines. Cell Rep. 2 (2012), 76–88.
108 Kobayakawa, K., Kobayakawa, R., Matsumoto, H., Oka, Y., Imai, T., Ikawa, M., Okabe, M., Ikeda, T., Itohara, S., Kikusui, T., et al. Innate versus learned odour processing in the mouse olfactory bulb. Nature 450 (2007), 503–508.
109 Lin, W., Margolskee, R., Donnert, G., Hell, S.W., Restrepo, D., Olfactory neurons expressing transient receptor potential channel M5 (TRPM5) are involved in sensing semiochemicals. Proc. Natl. Acad. Sci. USA 104 (2007), 2471–2476.
110 Thompson, J.A., Salcedo, E., Restrepo, D., Finger, T.E., Second-order input to the medial amygdala from olfactory sensory neurons expressing the transduction channel TRPM5. J. Comp. Neurol. 520 (2012), 1819–1830.
111 Kermen, F., Midroit, M., Kuczewski, N., Forest, J., Thevenet, M., Sacquet, J., Benetollo, C., Richard, M., Didier, A., Mandairon, N., Topographical representation of odor hedonics in the olfactory bulb. Nat. Neurosci. 19 (2016), 876–878.
112 Li, Q., Korzan, W.J., Ferrero, D.M., Chang, R.B., Roy, D.S., Buchi, M., Lemon, J.K., Kaur, A.W., Stowers, L., Fendt, M., et al. Synchronous evolution of an odor biosynthesis pathway and behavioral response. Curr. Biol. 23 (2013), 11–20.
113 Serizawa, S., Miyamichi, K., Takeuchi, H., Yamagishi, Y., Suzuki, M., Sakano, H., A neuronal identity code for the odorant receptor-specific and activity-dependent axon sorting. Cell 127 (2006), 1057–1069.
114 Saraiva, L.R., Kondoh, K., Ye, X., Yoon, K.H., Hernandez, M., Buck, L.B., Combinatorial effects of odorants on mouse behavior. Proc. Natl. Acad. Sci. USA 113 (2016), E3300–3306.
115 Haddad, R., Medhanie, A., Roth, Y., Harel, D., Sobel, N., Predicting odor pleasantness with an electronic nose. PLoS Comput. Biol., 6, 2010, e1000740.