A moth pheromone brewery: production of (Z)-11-hexadecenol by heterologous co-expression of two biosynthetic genes from a noctuid moth in a yeast cell factory.
[en] BACKGROUND: Moths (Lepidoptera) are highly dependent on chemical communication to find a mate. Compared to conventional unselective insecticides, synthetic pheromones have successfully served to lure male moths as a specific and environmentally friendly way to control important pest species. However, the chemical synthesis and purification of the sex pheromone components in large amounts is a difficult and costly task. The repertoire of enzymes involved in moth pheromone biosynthesis in insecta can be seen as a library of specific catalysts that can be used to facilitate the synthesis of a particular chemical component. In this study, we present a novel approach to effectively aid in the preparation of semi-synthetic pheromone components using an engineered vector co- expressing two key biosynthetic enzymes in a simple yeast cell factory. RESULTS: We first identified and functionally characterized a 11 Fatty- Acyl Desaturase and a Fatty-Acyl Reductase from the Turnip moth, Agrotis segetum. The 11-desaturase produced predominantly Z11-16:acyl, a common pheromone component precursor, from the abundant yeast palmitic acid and the FAR transformed a series of saturated and unsaturated fatty acids into their corresponding alcohols which may serve as pheromone components in many moth species. Secondly, when we co-expressed the genes in the Brewer's yeast Saccharomyces cerevisiae, a set of long-chain fatty acids and alcohols that are not naturally occurring in yeast were produced from inherent yeast fatty acids, and the presence of (Z)-11-hexadecenol (Z11-16:OH), demonstrated that both heterologous enzymes were active in concert. A 100 ml batch yeast culture produced on average 19.5 mug Z11-16:OH. Finally, we demonstrated that oxidized extracts from the yeast cells containing (Z)-11-hexadecenal and other aldehyde pheromone compounds elicited specific electrophysiological activity from male antennae of the Tobacco budworm, Heliothis virescens, supporting the idea that genes from different species can be used as a molecular toolbox to produce pheromone components or pheromone component precursors of potential use for control of a variety of moths. CONCLUSIONS: This study is a first proof-of-principle that it is possible to "brew" biologically active moth pheromone components through in vitro co-expression of pheromone biosynthetic enzymes, without having to provide supplementary precursors. Substrates present in the yeast alone appear to be sufficient.
Disciplines :
Biotechnology
Author, co-author :
Hagstrom, Asa K; Pheromone Group, Department of Biology, Lund University, Lund, Sweden.
Wang, Hong-Lei
Lienard, Marjorie ; Université de Liège - ULiège > GIGA > GIGA Molecular Biology of Diseases ; Université de Liège - ULiège > Département des sciences de la vie
Lassance, Jean-Marc ; Université de Liège - ULiège > Département de gestion vétérinaire des Ressources Animales (DRA) > Génomique animale
Johansson, Tomas
Lofstedt, Christer
Language :
English
Title :
A moth pheromone brewery: production of (Z)-11-hexadecenol by heterologous co-expression of two biosynthetic genes from a noctuid moth in a yeast cell factory.
Mallet J. The Lepidoptera taxome project. http://www.ucl.ac.uk/taxome/.
Simmons GS, Suckling DM, Carpenter JE, Addison MF, Dyck VA, Vreysen MJB. Improved quality management to enhance the efficacy of the sterile insect technique for lepidopteran pests. J Appl Entomol 2010, 134:261-273.
Brittain C, Potts SG. The potential impacts of insecticides on the life-history traits of bees and the consequences for pollination. Basic Appl Ecol 2011, 12:321-331.
Witzgall P, Kirsch P, Cork A. Sex pheromones and their impact on pest management. J Chem Ecol 2010, 36:80-100. 10.1007/s10886-009-9737-y, 20108027.
Reddy GVP, Guerrero A. New pheromones and insect control strategies. Vitamins and Hormones. Volume 83 2010, 493-519. Massachusetts: Elsevier Inc, Litwack G.
Botalova O, Schwarzbauer J, al Sandouk N. Identification and chemical characterization of specific organic indicators in the effluents from chemical production sites. Water Res 2011, 45:3653-3664. 10.1016/j.watres.2011.04.012, 21565380.
Noweck K, Grafahrend W. Fatty Alcohols. Ullmann's Encyclopedia of Industrial Chemistry 2006, 14:14. doi:10.1002/14356007.a10_277.pub2.
Kuenen LPS, McElfresh JS, Millar JG. Identification of critical secondary components of the Sex pheromoneof the navel orangeworm (Lepidoptera: pyralidae). J Econ Entomol 2010, 103:314-330. 10.1603/EC09177, 20429444.
Jurenka RA, Roelofs WL. Biosynthesis and endocrine regulation of fatty acid derived pheromones in moths. Insect Lipids: Chemistry, Biochemistry, and Biology 1993, 353-388. Lincoln: University of Nebraska Press, Stanley-Samuelson DW, Nelson DR.
Jurenka R. Insect pheromone biosynthesis. Top Curr Chem 2004, 239:97-132. 10.1007/b95450, 22160232.
Liénard MA, Lassance JM, Wang HL, Zhao CH, Piskur J, Johansson T, Löfstedt C. Elucidation of the sex-pheromone biosynthesis producing 5,7-dodecadienes in dendrolimus punctatus (Lepidoptera: lasiocampidae) reveals Δ11- and Δ9-desaturases with unusual catalytic properties. Insect Biochem Mol Biol 2010, 40:440-452. 10.1016/j.ibmb.2010.04.003, 20403437.
Liu W, Rooney AP, Xue B, Roelofs WL. Desaturases from the spotted fireworm moth (choristoneura parallela) shed light on the evolutionary origins of novel moth sex pheromone desaturases. Genetica 2004, 342:303-311.
Moto K, Suzuki MG, Hull JJ, Kurata R, Takahashi S, Yamamoto M, Okano K, Imai K, Ando T, Matsumoto S. Involvement of a bifunctional fatty-acyl desaturase in the biosynthesis of the silkmoth, Bombyx mori, sex pheromone. Proc Natl Acad Sci 2004, 101:8631-8636. 10.1073/pnas.0402056101, 423246, 15173596.
Rosenfield CL, You KM, Herrick PM, Roelofs WL, Knipple DC. Structural and functional conservation and divergence among acyl-CoA desaturases of two noctuid species, the corn earworm, helicoverpa zea, and the cabbage looper, trichoplusia ni. Insect Biochem Mol Biol 2001, 31:949-964. 10.1016/S0965-1748(01)00043-1, 11483431.
Moto K, Yoshiga T, Yamamoto M, Takahashi S, Okano K, Ando T, Nakata T, Matsumoto S. Pheromone gland-specific fatty-acyl reductase of the silkmoth, Bombyx mori. Proc Natl Acad Sci 2003, 100:9156-9161. 10.1073/pnas.1531993100, 170888, 12871998.
Lassance JM, Groot AT, Liénard MA, Anthony B, Bogwardt C, Andersson F, Hedenström E, Heckel DG, Löfstedt C. Allelic variation in a fatty-acyl reductase gene causes divergence in moth sex pheromones. Nature 2010, 466:486-491. 10.1038/nature09058, 20592730.
Lassance JM, Liénard MA, Anthony B, Qian S, Fujii T, Tabata J, Ishikawa Y, Löfstedt C. Functional consequences of sequence variation in the pheromone biosynthetic gene pgFAR for Ostrinia moths. Proc Natl Acad Sci 2013, 110:3967-3972. 10.1073/pnas.1208706110, 3593903, 23407169.
Liénard MA, Hagström T, Lassance JM, Löfstedt C. Evolution of multicomponent pheromone signals in small ermine moths involves a single fatty-acyl reductase gene. Proc Natl Acad Sci 2010, 107:10955-10960. 10.1073/pnas.1000823107, 2890718, 20534481.
Hagström T, Liénard MA, Groot AT, Hedenström E, Löfstedt C. Semi-selective fatty acyl reductases from four heliothine moths influence the specific pheromone composition. PLoS One 2012, 7:e37230. 10.1371/journal.pone.0037230, 3353883, 22615947.
Blagovic B, Rupcic J, Mesaric M, Georgiu K, Maric V. Lipid composition of Brewer's yeast. Food Technol Biotechnol 2001, 39:175-181.
Liénard MA, Strandh M, Hedenström E, Johansson T, Löfstedt C. Key biosynthetic gene subfamily recruited for pheromone production prior to the extensive radiation of Lepidoptera. BMC Evol Biol 2008, 8:270. 10.1186/1471-2148-8-270, 2584044, 18831750.
Pherobase.com. http://www.pherobase.com/.
Strandh M, Johansson T, Ahrén D, Löfstedt C. Transcriptional analysis of the pheromone gland of the turnip moth, Agrotis segetum (Noctuidae), reveals candidate genes involved in pheromone production. Insect Biochem Mol Biol 2008, 17:73-85.
Serra M, Piña B, Abad JL, Camps F, Fabriàs G. A multifunctional desaturase involved in the biosynthesis of the processionary moth sex pheromone. Proc Natl Acad Sci USA 2007, 104:16444-9. 10.1073/pnas.0705385104, 2034215, 17921252.
Albre J, Liénard MA, Sirey TM, Schmidt S, Tooman LK, Carraher C, Greenwood DR, Löfstedt C, Newcomb RD. Sex pheromone evolution is associated with differential regulation of the same desaturase gene in two genera of leafroller moths. PLoS Genet 2012, 8:e1002489. 10.1371/journal.pgen.1002489, 3266893, 22291612.
Knipple DC, Rosenfield CL, Miller SJ, Liu W, Tang J, Ma PWK, Roelofs WL. Cloning and functional expression of a cDNA encoding a pheromone gland-specific acyl-CoA D11-desaturase of the cabbage looper moth, Trichoplusia ni. Proc Natl Acad Sci 1998, 95:15287-15292. 10.1073/pnas.95.26.15287, 28035, 9860961.
Rodri{dotless}guez S, Hao G, Liu W, Pina B, Rooney AP, Camps F, Roelofs WL, Fabrias G. Expression and evolution of delta9 and delta11 desaturase genes in the moth Spodoptera littoralis. Insect Biochem Mol Biol 2004, 34:1315-1328. 10.1016/j.ibmb.2004.09.003, 15544945.
Park HY, Kim MS, Paek A, Jeong SE, Knipple DC. An abundant acyl-CoA (D9) desaturase transcript in pheromone glands of the cabbage moth, Mamestra brassicae, encodes a catalytically inactive protein. Insect Biochem Mol Biol 2008, 38:581-595. 10.1016/j.ibmb.2008.02.001, 18405835.
Bauler P, Huber G, Leyh T, McCammon JA. Channeling by proximity: the catalytic advantages of active site colocalization using Brownian dynamics. J Phys Chem Lett 2010, 1:1332-1335. 10.1021/jz1002007, 2865391, 20454551.
Shanklin J, Cahoon EB. Desaturation and related modifications of fatty acids. Annu Rev Plant Physiol Plant Mol Biol 1998, 49:611-641. 10.1146/annurev.arplant.49.1.611, 15012248.
Stuckey JE, McDonough VM, Martin CE. The OLE1 gene of Saccharomyces cerevisiae encodes the {increment}9 fatty acid desaturase and can be functionally replaced by the rat stearoyl-CoA desaturase gene. J Biol Chem 1990, 265:20144-20149.
Tocher DR, Leaver MJ, Hodgson PA. Recent advanced in the biochemistry and molecular biology of fatty acid desaturases. Prog Lipid Res 1998, 37:73-117. 10.1016/S0163-7827(98)00005-8, 9829122.
Hagström T, Walther A, Wendland J, Löfstedt C. Subcellular localization of the fatty acyl Reductase involved in pheromone biosynthesis in the tobacco budworm, heliothis virescens (noctuidae: Lepidoptera). Insect Biochem Mol Biol 2013, 43:510-521. 10.1016/j.ibmb.2013.03.006, 23537692.
Tracewell CA, Arnold FH. Directed enzyme evolution: climbing fitness peaks one amino acid at a time. Curr Opin Chem Biol 2009, 13:3-9. 10.1016/j.cbpa.2009.01.017, 2703427, 19249235.
Ogawa J, Shimizu S. Industrial microbial enzymes: their discovery by screening and use in large-scale production of useful chemicals in Japan. Curr Opin Biotechnol 2002, 13:367-375. 10.1016/S0958-1669(02)00331-2, 12323360.
Chemler JA, Yan Y, Koffas MAG. Biosynthesis of isoprenoids, polyunsaturated fatty acids and flavonoids in Saccharomyces cerevisiae. Microb Cell Fact 2006, 5:1-9. 10.1186/1475-2859-5-1, 1360089, 16396686.
Du Y, Li P, Chen Z, Lin Y, Wang Y, Qin Y. Field trapping of male phyllonorycter ringoniella using variable ratios of pheromone components. Entomol Exp Appl 2013, 146:357-363.
Cahoon EB, Mills LA, Shanklin J. Modification of the fatty acid composition of Escherichia coli by coexpression of a plant acyl-acyl carrier protein desaturase and ferredoxin. J Bacteriol 1996, 178:936-939. 177750, 8550538.
Hoffmann M, Wagner M, Abbadi A, Fulda M, Feussner I. Metabolic engineering of ω3-very long chain polyunsaturated fatty acid production by an exclusively acyl-CoA-dependent pathway. J Biol Chem 2008, 283:22352-22362. 10.1074/jbc.M802377200, 18556660.
Chuang LT, Chen DC, Nicaud J, Madzak C, Chen YH, Huang YS. Co-expression of heterologous desaturase genes in Yarrowia lipolytica. New Biotechnol 2010, 27:277-282.
NCBI (national centre for biotechnology information. [http://www.ncbi.nlm.nih.gov].
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molec Biol Evol 2011, 28:2731-2739. 10.1093/molbev/msr121, 3203626, 21546353.
Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 2003, 31:3497-3500. 10.1093/nar/gkg500, 168907, 12824352.
Hall T. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp 1999, 41:95-98.
Buser HR, Arn H, Guerin P, Rauscher S. Determination of double bond position in mono-unsaturated acetates by mass spectrometry of dimethyl disulfide adducts. Anal Chem 1983, 55:818-822.
Gietz RD, Woods RA. Transformation of yeast by the Liac/SS carrier DNA/PEG method. Meth Enzymol 2002, 350:87-96.
Klun JA, Bierl-Leonhardt BA, Plimmer JR, Sparks AN, Primani M, Chapman OL, Lepone G, Lee GH. Sex pheromone chemistry of the female tobacco budworm moth, heliothis virescens. J Chem Ecol 1980, 6:177-183.
Teal PEA, Tumlinson JH, Heath RR. Chemical and behavioral analyses of volatile sex pheromone components released by calling heliothis virescens (F.) females (Lepidoptera: noctuidae). J Chem Ecol 1986, 12:107-126. 10.1007/BF01045595, 24306401.