[en] Color vision has evolved multiple times in both vertebrates and invertebrates and is largely determined by the number and variation in spectral sensitivities of distinct opsin subclasses. However, because of the difficulty of expressing long-wavelength (LW) invertebrate opsins in vitro, our understanding of the molecular basis of functional shifts in opsin spectral sensitivities has been biased toward research primarily in vertebrates. This has restricted our ability to address whether invertebrate Gq protein-coupled opsins function in a novel or convergent way compared to vertebrate Gt opsins. Here we develop a robust heterologous expression system to purify invertebrate rhodopsins, identify specific amino acid changes responsible for adaptive spectral tuning, and pinpoint how molecular variation in invertebrate opsins underlie wavelength sensitivity shifts that enhance visual perception. By combining functional and optophysiological approaches, we disentangle the relative contributions of lateral filtering pigments from red-shifted LW and blue short-wavelength opsins expressed in distinct photoreceptor cells of individual ommatidia. We use in situ hybridization to visualize six ommatidial classes in the compound eye of a lycaenid butterfly with a four-opsin visual system. We show experimentally that certain key tuning residues underlying green spectral shifts in blue opsin paralogs have evolved repeatedly among short-wavelength opsin lineages. Taken together, our results demonstrate the interplay between regulatory and adaptive evolution at multiple Gq opsin loci, as well as how coordinated spectral shifts in LW and blue opsins can act together to enhance insect spectral sensitivity at blue and red wavelengths for visual performance adaptation.
Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
Lienard, Marjorie ; Université de Liège - ULiège > GIGA > GIGA Molecular Biology of Diseases ; Université de Liège - ULiège > Département des sciences de la vie
Bernard, Gary D ; Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195
Allen, Andrew; Broad Institute of MIT and Harvard University, Cambridge, MA 02142
Lassance, Jean-Marc ; Université de Liège - ULiège > Département de gestion vétérinaire des Ressources Animales (DRA) > Génomique animale ; Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
Song, Siliang ; Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
Childers, Richard Rabideau ; Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
Yu, Nanfang ; Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027
Ye, Dajia; Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
Stephenson, Adriana; Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
Valencia-Montoya, Wendy A ; Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
Salzman, Shayla ; Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
Whitaker, Melissa R L ; Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
Calonje, Michael; Montgomery Botanical Center, Miami, FL 33156
Zhang, Feng; Broad Institute of MIT and Harvard University, Cambridge, MA 02142 ; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 ; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 ; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 ; Howard Hughes Medical Institute, Cambridge, MA 02139
Pierce, Naomi E ; Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, marjorie.lienard@biol.lu.se npierce@oeb.harvard.edu
NSF - National Science Foundation NHGRI - National Human Genome Research Institute NHLBI - National Heart Lung and Blood Institute NIMH - National Institute of Mental Health KAW - Knut och Alice Wallenbergs Stiftelse Kungliga Fysiografiska Sällskapet i Lund Stiftelsen Lars Hiertas Minne
Funding text :
We thank Masaru Hojo for providing pupae of A. japonica; Sandy Koi for providing E. atala and for advice regarding rearing and ecology; Maria Eriksson and Peg Coughin for assistance with electron microscopy; Xi Shi, Sara Jones, and Jonathan Schmid-Burgk for advice on cell culture; Ian Slaymaker for advice on protein purification procedures; Hopi E. Hoekstra for access to cryostat and microscope; Rachel Gaudet and Jos? Velilla for guidance using Pymol; Rosalie Crouch for providing the 11-cis-retinal; Jeanne M. Serb and Davide Faggionato for advice on 11-cis-retinal delivery; Kentaro Arikawa, Julien Ayroles, Gregor Belu?i?, Mary Caswell Stoddard, Almut Kelber, Olle Lind, Rhiannon Macrae, Samuel Aravinthan, and Mandyam Veerambudi Srinivasan for helpful discussions; Adriana Briscoe for providing helpful feedback on an earlier version of the manuscript; and Richard Belliveau, Maggie Starvish, and Rachel Hawkins for providing logistical support. The computations were run on the FASRC Odyssey cluster of the FAS Division of Science Research Computing Group at Harvard University. This work was supported by a Mind Brain Behavior Interfaculty grant (to N.E.P. and M.A.L.), an Knut and Alice Wallenberg postdoctoral fellowship at the Broad Institute of MIT and Harvard (to M.A.L.), the Royal Physiographic Society of Lund (M.A.L.), the Lars Hierta Memorial Foundation (M.A.L.), an NSF graduate research fellowship (to S. Salzman), personal funds (G.D.B.), and NSF DEB-1541560 (to N.E.P.) and PHY-1411445 (to N.E.P. and N.Y.). F.Z. is an investigator of the Howard Hughes Medical Institute and is supported by NIH Grants 1R01-HG009761, 1R01-MH110049, and 1DP1-HL141201; the Open Philanthropy Project; the Harold G. and Leila Mathers and the Edward Mallinckrodt, Jr. Foundations; the Poitras Center for Psychiatric Disorders Research at MIT; the Hock E. Tan and K. Lisa Yang Center for Autism Research at MIT; and by the Phillips family and J. and P. Poitras. Publication charges supported by a grant from the Wetmore Colles Fund.ACKNOWLEDGMENTS. We thank Masaru Hojo for providing pupae of A. japonica; Sandy Koi for providing E. atala and for advice regarding rearing and ecology; Maria Eriksson and Peg Coughin for assistance with electron microscopy; Xi Shi, Sara Jones, and Jonathan Schmid-Burgk for advice on cell culture; Ian Slaymaker for advice on protein purification procedures; Hopi E. Hoekstra for access to cryostat and microscope; Rachel Gaudet and José Velilla for guidance using Pymol; Rosalie Crouch for providing the 11-cis-retinal; Jeanne M. Serb and Davide Faggionato for advice on 11-cis-retinal delivery; Kentaro Arikawa, Julien Ayroles, Gregor Belušicˇ, Mary Caswell Stoddard, Almut Kelber, Olle Lind, Rhiannon Macrae, Samuel Aravinthan, and Mandyam Veerambudi Srinivasan for helpful discussions; Adriana Briscoe for providing helpful feedback on an earlier version of the manuscript; and Richard Belliveau, Maggie Starvish, and Rachel Hawkins for providing logistical support. The computations were run on the FASRC Odyssey cluster of the FAS Division of Science Research Computing Group at Harvard University. This work was supported by a Mind Brain Behavior Interfaculty grant (to N.E.P. and M.A.L.), an Knut and Alice Wallenberg postdoctoral fellowship at the Broad Institute of MIT and Harvard (to M.A.L.), the Royal Physiographic Society of Lund (M.A.L.), the Lars Hierta Memorial Foundation (M.A.L.), an NSF graduate research fellowship (to S. Salzman), personal funds (G.D.B.), and NSF DEB-1541560 (to N.E.P.) and PHY-1411445 (to N.E.P. and N.Y.). F.Z. is an investigator of the Howard Hughes Medical Institute and is supported by NIH Grants 1R01-HG009761, 1R01-MH110049, and 1DP1-HL141201; the Open Philanthropy Project; the Harold G. and Leila Mathers and the Edward Mallinckrodt, Jr. Foundations; the Poitras Center for Psychiatric Disorders Research at MIT; the Hock E. Tan and K. Lisa Yang Center for Autism Research at MIT; and by the Phillips family and J. and P. Poitras. Publication charges supported by a grant from the Wetmore Colles Fund.
A. Terakita, The opsins. Genome Biol. 6, 213 (2005).
S. Yokoyama, Evolution of dim-light and color vision pigments. Annu. Rev. Genomics Hum. Genet. 9, 259-282 (2008).
D. E. Nilsson, The evolution of eyes and visually guided behaviour. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 2833-2847 (2009).
A. D. Briscoe, L. Chittka, The evolution of color vision in insects. Annu. Rev. Entomol. 46, 471-510 (2001).
F. E. Hauser, B. S. Chang, Insights into visual pigment adaptation and diversity from model ecological and evolutionary systems. Curr. Opin. Genet. Dev. 47, 110-120 (2017).
F. D. Frentiu, G. D. Bernard, M. P. Sison-Mangus, A. V. Brower, A. D. Briscoe, Gene duplication is an evolutionary mechanism for expanding spectral diversity in the long-wavelength photopigments of butterflies. Mol. Biol. Evol. 24, 2016-2028 (2007).
M. Vorobyev, Ecology and evolution of primate colour vision. Clin. Exp. Optom. 87, 230-238 (2004).
A. D. Briscoe, Reconstructing the ancestral butterfly eye: Focus on the opsins. J. Exp. Biol. 211, 1805-1813 (2008).
K. J. McCulloch et al., Sexual dimorphism and retinal mosaic diversification following the evolution of a violet receptor in butterflies. Mol. Biol. Evol. 34, 2271-2284 (2017).
A. D. Briscoe et al., Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies. Proc. Natl. Acad. Sci. U.S.A. 107, 3628-3633 (2010).
D. Armisén et al., The genome of the water strider Gerris buenoi reveals expansions of gene repertoires associated with adaptations to life on the water. BMC Genomics 19, 832 (2018).
C. R. Sharkey et al., Overcoming the loss of blue sensitivity through opsin duplication in the largest animal group, beetles. Sci. Rep. 7, 8 (2017).
D. Wang et al., Molecular evolution of bat color vision genes. Mol. Biol. Evol. 21, 295-302 (2004).
H. Koshitaka, M. Kinoshita, M. Vorobyev, K. Arikawa, Tetrachromacy in a butterfly that has eight varieties of spectral receptors. Proc. Biol. Sci. 275, 947-954 (2008).
F. D. Frentiu et al., Adaptive evolution of color vision as seen through the eyes of butterflies. Proc. Natl. Acad. Sci. U.S.A. 104 (suppl. 1), 8634-8640 (2007).
R. Futahashi et al., Extraordinary diversity of visual opsin genes in dragonflies. Proc. Natl. Acad. Sci. U.S.A. 112, E1247-E1256 (2015).
M. Wakakuwa et al., Evolution and mechanism of spectral tuning of blue-absorbing visual pigments in butterflies. PLoS One 5, e15015 (2010).
M. Neitz, J. Neitz, G. H. Jacobs, Spectral tuning of pigments underlying red-green color vision. Science 252, 971-974 (1991).
I. van Hazel, A. Sabouhanian, L. Day, J. A. Endler, B. S. Chang, Functional characterization of spectral tuning mechanisms in the great bowerbird short-wavelength sensitive visual pigment (SWS1), and the origins of UV/violet vision in passerines and parrots. BMC Evol. Biol. 13, 250 (2013).
H. Sun, J. P. Macke, J. Nathans, Mechanisms of spectral tuning in the mouse green cone pigment. Proc. Natl. Acad. Sci. U.S.A. 94, 8860-8865 (1997).
F. E. Hauser, I. van Hazel, B. S. W. Chang, Spectral tuning in vertebrate short wavelength-sensitive 1 (SWS1) visual pigments: Can wavelength sensitivity be inferred from sequence data? J. Exp. Zoolog. B Mol. Dev. Evol. 322, 529-539 (2014).
M. Perry et al., Molecular logic behind the three-way stochastic choices that expand butterfly colour vision. Nature 535, 280-284 (2016).
J. W. Parry et al., Mix and match color vision: Tuning spectral sensitivity by differential opsin gene expression in lake Malawi cichlids. Curr. Biol. 15, 1734-1739 (2005).
M. L. Porter, H. Awata, M. J. Bok, T. W. Cronin, Exceptional diversity of opsin expression patterns in Neogonodactylus oerstedii (Stomatopoda) retinas. Proc. Natl. Acad. Sci. U.S.A. 117, 8948-8957 (2020).
T. W. Cronin, N. J. Marshall, R. L. Caldwell, Spectral tuning and the visual ecology of mantis shrimps. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355, 1263-1267 (2000).
C. van der Kooi, D. Stavenga, K. Arikawa, G. Belusic, A. Kelber, Evolution of insect colour vision-From spectral sensitivity to visual ecology. Annu. Rev. Entomol. 66, 23.1-23.28 (2021).
K. Arikawa, The eyes and vision of butterflies. J. Physiol. 595, 5457-5464 (2017).
G. H. Jacobs, Primate photopigments and primate color vision. Proc. Natl. Acad. Sci. U.S.A. 93, 577-581 (1996).
M. Luehrmann et al., Short-term colour vision plasticity on the reef: Changes in opsin expression under varying light conditions differ between ecologically distinct fish species. J. Exp. Biol. 221, jeb175281 (2018).
G. H. Jacobs, Evolution of colour vision in mammals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 2957-2967 (2009).
Y. Shichida, T. Matsuyama, Evolution of opsins and phototransduction. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 2881-2895 (2009).
E. A. Gutierrez et al., The role of ecological factors in shaping bat cone opsin evolution. Proc. Biol. Sci. 285, 20172835 (2018).
A. Terakita et al., Expression and comparative characterization of Gq-coupled invertebrate visual pigments and melanopsin. J. Neurochem. 105, 883-890 (2008).
G. L. Fain, R. Hardie, S. B. Laughlin, Phototransduction and the evolution of photoreceptors. Curr. Biol. 20, R114-R124 (2010).
D. C. Plachetzki, C. R. Fong, T. H. Oakley, The evolution of phototransduction from an ancestral cyclic nucleotide gated pathway. Proc. Biol. Sci. 277, 1963-1969 (2010).
M. P. Gomez, E. Nasi, Light transduction in invertebrate hyperpolarizing photoreceptors: Possible involvement of a Go-regulated guanylate cyclase. J. Neurosci. 20, 5254-5263 (2000).
Y. J. Lee et al., The Drosophila dgq gene encodes a G alpha protein that mediates phototransduction. Neuron 13, 1143-1157 (1994).
R. Hardie, Phototransduction mechanisms in Drosophila microvillar photoreceptors. WIREs Membr Transp Signal 1, 162-187 (2012).
A. Kelber, Bird colour vision-From cones to perception. Curr. Opin. Behav. Sci. 30, 34-40 (2019).
K. L. Carleton, T. D. Kocher, Cone opsin genes of african cichlid fishes: Tuning spectral sensitivity by differential gene expression. Mol. Biol. Evol. 18, 1540-1550 (2001).
Y. Shi, S. Yokoyama, Molecular analysis of the evolutionary significance of ultraviolet vision in vertebrates. Proc. Natl. Acad. Sci. U.S.A. 100, 8308-8313 (2003).
J. K. Bowmaker, D. M. Hunt, Evolution of vertebrate visual pigments. Curr. Biol. 16, R484-R489 (2006).
G. H. Jacobs, Losses of functional opsin genes, short-wavelength cone photopigments, and color vision-A significant trend in the evolution of mammalian vision. Vis. Neurosci. 30, 39-53 (2013).
J. Nathans, D. Thomas, D. S. Hogness, Molecular genetics of human color vision: The genes encoding blue, green, and red pigments. Science 232, 193-202 (1986).
K. S. Dulai, M. von Dornum, J. D. Mollon, D. M. Hunt, The evolution of trichromatic color vision by opsin gene duplication in New World and Old World primates. Genome Res. 9, 629-638 (1999).
S. Yokoyama et al., Epistatic adaptive evolution of human color vision. PLoS Genet. 10, e1004884 (2014).
S. Kawamura, Color vision diversity and significance in primates inferred from genetic and field studies. Genes Genomics 38, 779-791 (2016).
R. Feuda, F. Marlétaz, M. A. Bentley, P. W. H. Holland, Conservation, duplication, and divergence of five opsin genes in insect evolution. Genome Biol. Evol. 8, 579-587 (2016).
A. Monteiro, Origin, development, and evolution of butterfly eyespots. Annu. Rev. Entomol. 60, 253-271 (2015).
K. Dasmahapatra et al.; Heliconius Genome Consortium, Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487, 94-98 (2012).
G. D. Bernard, Red-absorbing visual pigment of butterflies. Science 203, 1125-1127 (1979).
G. Bernard, J. Douglass, T. Goldsmith, Far-red sensitive visual pigment of a metal-mark butterfly. Invest. Ophthalmol. 29, 350 (1988).
A. Kelber, Ovipositing butterflies use a red receptor to see green. J. Exp. Biol. 202, 2619-2630 (1999).
G. Pratt, J. Emmel, G. D. Bernard, The buckwheat metalmarks. Am Butterflies 19, 4-31 (2011).
P.-J. Chen, H. Awata, A. Matsushita, E.-C. Yang, K. Arikawa, Extreme spectral richness in the eye of the common bluebottle butterfly, Graphium sarpedon. Front. Ecol. Evol. 4, 18 (2016).
G. Zaccardi, A. Kelber, M. P. Sison-Mangus, A. D. Briscoe, Color discrimination in the red range with only one long-wavelength sensitive opsin. J. Exp. Biol. 209, 1944-1955 (2006).
M. Wakakuwa, D. G. Stavenga, M. Kurasawa, K. Arikawa, A unique visual pigment expressed in green, red and deep-red receptors in the eye of the small white butterfly, Pieris rapae crucivora. J. Exp. Biol. 207, 2803-2810 (2004).
Y. Ogawa, M. Kinoshita, D. G. Stavenga, K. Arikawa, Sex-specific retinal pigmentation results in sexually dimorphic long-wavelength-sensitive photoreceptors in the eastern pale clouded yellow butterfly, Colias erate. J. Exp. Biol. 216, 1916-1923 (2013).
A. Satoh et al., Red-shift of spectral sensitivity due to screening pigment migration in the eyes of a moth, Adoxophyes orana. Zoological Lett. 3, 14 (2017).
P. Pirih et al., The giant butterfly-moth Paysandisia archon has spectrally rich apposition eyes with unique light-dependent photoreceptor dynamics. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 204, 639-651 (2018).
M. P. Sison-Mangus, A. D. Briscoe, G. Zaccardi, H. Knüttel, A. Kelber, The lycaenid butterfly Polyommatus icarus uses a duplicated blue opsin to see green. J. Exp. Biol. 211, 361-369 (2008).
G. D. Bernard, C. L. Remington, Color vision in Lycaena butterflies: Spectral tuning of receptor arrays in relation to behavioral ecology. Proc. Natl. Acad. Sci. U.S.A. 88, 2783-2787 (1991).
M. P. Sison-Mangus, G. D. Bernard, J. Lampel, A. D. Briscoe, Beauty in the eye of the beholder: The two blue opsins of lycaenid butterflies and the opsin gene-driven evolution of sexually dimorphic eyes. J. Exp. Biol. 209, 3079-3090 (2006).
K. J. McCulloch, D. Osorio, A. D. Briscoe, Sexual dimorphism in the compound eye of Heliconius erato: A nymphalid butterfly with at least five spectral classes of photoreceptor. J. Exp. Biol. 219, 2377-2387 (2016).
P. Pirih, K. Arikawa, D. G. Stavenga, An expanded set of photoreceptors in the Eastern Pale Clouded Yellow butterfly, Colias erate. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 196, 501-517 (2010).
A. J. Blake, P. Pirih, X. Qiu, K. Arikawa, G. Gries, Compound eyes of the small white butterfly Pieris rapae have three distinct classes of red photoreceptors. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 205, 553-565 (2019).
G. D. Bernard, Bleaching of rhabdoms in eyes of intact butterflies. Science 219, 69-71 (1983).
E. van Nieukerken et al., Order Lepidoptera Linnaeus, 1758. Zootaxa 3148, 212-221 (2011).
M. Heikkilä, L. Kaila, M. Mutanen, C. Peña, N. Wahlberg, Cretaceous origin and repeated tertiary diversification of the redefined butterflies. Proc. Biol. Sci. 279, 1093-1099 (2012).
M. Espeland et al., A comprehensive and dated phylogenomic analysis of butterflies. Curr. Biol. 28, 770-778.e5 (2018).
B. S. W. Chang, D. Ayers, W. C. Smith, N. E. Pierce, Cloning of the gene encoding honeybee long-wavelength rhodopsin: A new class of insect visual pigments. Gene 173, 215-219 (1996).
W.-H. Chou et al., Identification of a novel Drosophila opsin reveals specific patterning of the R7 and R8 photoreceptor cells. Neuron 17, 1101-1115 (1996).
D. Osorio, M. Vorobyev, A review of the evolution of animal colour vision and visual communication signals. Vision Res. 48, 2042-2051 (2008).
J. A. Endler, A. L. Basolo, Sensory ecology, receiver biases and sexual selection. Trends Ecol. Evol. 13, 415-420 (1998).
A. Kelber, D. Osorio, From spectral information to animal colour vision: Experiments and concepts. Proc. Biol. Sci. 277, 1617-1625 (2010).
D. Osorio, M. Vorobyev, Photoreceptor spectral sensitivities in terrestrial animals: Adaptations for luminance and colour vision. Proc. Biol. Sci. 272, 1745-1752 (2005).
R. Vane-Wright, M. Boppre, Visual and chemical signalling in butterflies: Functional and phylogenetic perspectives. Proc. Biol. Sci. 340, 197-205 (1993).
J. A. Fordyce, C. C. Nice, M. L. Forister, A. M. Shapiro, The significance of wing pattern diversity in the Lycaenidae: Mate discrimination by two recently diverged species. J. Evol. Biol. 15, 871-879 (2002).
C. D. Jiggins, R. E. Naisbit, R. L. Coe, J. Mallet, Reproductive isolation caused by colour pattern mimicry. Nature 411, 302-305 (2001).
L. Wilkins, D. Osorio, Object colours, material properties and animal signals. J. Exp. Biol., 10.1242/jeb.204487 (2019).
S. Koi, D. Hall, “Atala butterfly, Atala hairstreak, Coontie hairstreak, Eumaeus atala Poey 1832 (Insecta: Lepidoptera: Lycaenidae)” (EENY-169, University of Florida IFAS Extension, 2016).
F. D. Frentiu et al., Opsin clines in butterflies suggest novel roles for insect photopigments. Mol. Biol. Evol. 32, 368-379 (2015).
A. Eacock et al., Adaptive colour change and background choice behaviour in peppered moth caterpillars is mediated by extraocular photoreception. Commun. Biol. 2, 286 (2019).
H. D. Bracken-Grissom et al., Light organ photosensitivity in deep-sea shrimp may suggest a novel role in counterillumination. Sci. Rep. 10, 4485 (2020).
M. W. Donohue, J. H. Cohen, T. W. Cronin, Cerebral photoreception in mantis shrimp. Sci. Rep. 8, 9689 (2018).
M. L. Porter, Beyond the eye: Molecular evolution of extraocular photoreception. Integr. Comp. Biol. 56, 842-852 (2016).
M. Manceau, V. S. Domingues, C. R. Linnen, E. B. Rosenblum, H. E. Hoekstra, Convergence in pigmentation at multiple levels: Mutations, genes and function. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 2439-2450 (2010).
M. Chapal, S. Mintzer, S. Brodsky, M. Carmi, N. Barkai, Resolving noise-control conflict by gene duplication. PLoS Biol. 17, e3000289 (2019).
S. B. Carroll, Evolution at two levels: On genes and form. PLoS Biol. 3, e245 (2005).
N. Hempel de Ibarra, M. Vorobyev, R. Menzel, Mechanisms, functions and ecology of colour vision in the honeybee. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 200, 411-433 (2014).
T. Saito et al., Spectral tuning mediated by helix III in butterfly long wavelength-sensitive visual opsins revealed by heterologous action spectroscopy. Zoological Lett. 5, 35 (2019).
K. Arikawa, Spectral organization of the eye of a butterfly, Papilio. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 189, 791-800 (2003).
N. S. Hart, D. M. Hunt, Avian visual pigments: Characteristics, spectral tuning, and evolution. Am. Nat. 169 (suppl. 1), S7-S26 (2007).
I. C. Cuthill et al., The biology of color. Science 357, eaan0221 (2017).
D. A. Marques et al., Convergent evolution of SWS2 opsin facilitates adaptive radiation of threespine stickleback into different light environments. PLoS Biol. 15, e2001627 (2017).
F. de Busserolles, L. Fogg, F. Cortesi, J. Marshall, The exceptional diversity of visual adaptations in deep-sea teleost fishes. Semin. Cell Dev. Biol. 106, 20-30 (2020).
J. Partridge, R. Douglas, Far-red sensitivity of dragon fish. Nature 375, 21-22 (1995).
Y. Terai et al., Divergent selection on opsins drives incipient speciation in Lake Victoria cichlids. PLoS Biol. 4, e433 (2006).
R. J. Prokopy, E. D. Owens, Visual detection of plants by herbivorous insects. Annu. Rev. Entomol. 28, 337-364 (1983).
O. W. Liew, P. C. Chong, B. Li, A. K. Asundi, Signature optical cues: Emerging technologies for monitoring plant health. Sensors (Basel) 8, 3205-3239 (2008).
H. Kaessmann, Origins, evolution, and phenotypic impact of new genes. Genome Res. 20, 1313-1326 (2010).
J. Zhang, Evolution by gene duplication: An update. Trends Ecol. Evol. 18, 292-298 (2003).
M. Lynch, J. S. Conery, The evolutionary fate and consequences of duplicate genes. Science 290, 1151-1155 (2000).
M. Long, K. Thornton, Gene duplication and evolution. Science 293, 1551 (2001).
M. Soskine, D. S. Tawfik, Mutational effects and the evolution of new protein functions. Nat. Rev. Genet. 11, 572-582 (2010).
G. M. Castiglione, B. S. W. Chang, Functional trade-offs and environmental variation shaped ancient trajectories in the evolution of dim-light vision. eLife 7, e35957 (2018).
J. Zhang, Y. P. Zhang, H. F. Rosenberg, Adaptive evolution of a duplicated pancreatic ribonuclease gene in a leaf-eating monkey. Nat. Genet. 30, 411-415 (2002).
M. A. Liénard, H.-L. Wang, J.-M. Lassance, C. Löfstedt, Sex pheromone biosynthetic pathways are conserved between moths and the butterfly Bicyclus anynana. Nat. Commun. 5, 3957 (2014).
P. Brand et al., The evolution of sexual signaling is linked to odorant receptor tuning in perfume-collecting orchid bees. Nat. Commun. 11, 244 (2020).
N. P. Lord et al., A cure for the blues: Opsin duplication and subfunctionalization for short-wavelength sensitivity in jewel beetles (Coleoptera: Buprestidae). BMC Evol. Biol. 16, 107 (2016).
H. Awata, M. Wakakuwa, K. Arikawa, Evolution of color vision in pierid butterflies: Blue opsin duplication, ommatidial heterogeneity and eye regionalization in Colias erate. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 195, 401-408 (2009).
A. D. Briscoe, Six opsins from the butterfly Papilio glaucus: Molecular phylogenetic evidence for paralogous origins of red-sensitive visual pigments in insects. J. Mol. Evol. 51, 110-121 (2000).
K. Arikawa, M. Wakakuwa, X. Qiu, M. Kurasawa, D. G. Stavenga, Sexual dimorphism of short-wavelength photoreceptors in the small white butterfly, Pieris rapae crucivora. J. Neurosci. 25, 5935-5942 (2005).
J. I. Fasick, N. Lee, D. D. Oprian, Spectral tuning in the human blue cone pigment. Biochemistry 38, 11593-11596 (1999).
S. Yokoyama, T. Tada, The spectral tuning in the short wavelength-sensitive type 2 pigments. Gene 306, 91-98 (2003).
A. Chinen, Y. Matsumoto, S. Kawamura, Spectral differentiation of blue opsins between phylogenetically close but ecologically distant goldfish and zebrafish. J. Biol. Chem. 280, 9460-9466 (2005).
T. Chan, M. Lee, T. P. Sakmar, Introduction of hydroxyl-bearing amino acids causes bathochromic spectral shifts in rhodopsin. Amino acid substitutions responsible for red-green color pigment spectral tuning. J. Biol. Chem. 267, 9478-9480 (1992).
F. D. Frentiu, A. D. Briscoe, A butterfly eye's view of birds. BioEssays 30, 1151-1162 (2008).
M. Ryan, M. Cummings, Conceptual biases and mate choice. Annu. Rev. Ecol. Evol. Syst. 44, 437-459 (2013).
J. W. Boughman, Divergent sexual selection enhances reproductive isolation in sticklebacks. Nature 411, 944-948 (2001).
O. Lind, M. J. Henze, A. Kelber, D. Osorio, Coevolution of coloration and colour vision? Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160338 (2017).
S. M. Bybee et al., UV photoreceptors and UV-yellow wing pigments in Heliconius butterflies allow a color signal to serve both mimicry and intraspecific communication. Am. Nat. 179, 38-51 (2012).
A. Kelber, L. S. V. Roth, Nocturnal colour vision-not as rare as we might think. J. Exp. Biol. 209, 781-788 (2006).
L. Chittka, Optimal sets of receptors and color opponent systems for coding of natural objects in insect vision. J. Theor. Biol. 181, 179-196 (1996).
L. Chittka, The colour hexagon: A chromaticity diagram based on photoreceptor excitations as a generalized representation of colour opponency. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 170, 533-543 (1992).
D. E. McCoy, R. O. Prum, Convergent evolution of super black plumage near bright color in 15 bird families. J. Exp. Biol. 222, jeb208140 (2019).
D. E. McCoy et al., Structurally assisted super black in colourful peacock spiders. Proc. Biol. Sci. 286, 20190589 (2019).
A. L. Davis, H. F. Nijhout, S. Johnsen, Diverse nanostructures underlie thin ultra-black scales in butterflies. Nat. Commun. 11, 1294 (2020).
P. Vukusic, J. R. Sambles, C. R. Lawrence, Structurally assisted blackness in butterfly scales. Proc. Biol. Sci. 271 (suppl. 4), S237-S239 (2004).
M. R. L. Whitaker, S. Salzman, Ecology and evolution of cycad-feeding lepidoptera. Ecol. Lett. 23, 1862-1877 (2020).
M. Rossi et al., Neural processing genes are linked to divergence in visual mate preference in sympatric Heliconius butterflies. Nat. Commun. 11, 4763 (2020).
R. Segalla, F. J. Telles, F. Pinheiro, P. Morellato, A review of current knowledge of Zamiaceae, with emphasis on Zamia from South America. Trop. Conserv. Sci. 12, 1-21 (2019).
C. Taddei-Ferretti, Ed., “Costs and benefits of increasing the dimensionality of color vision system” in Biophysics of Photoreception: Molecular and Phototransductive Events (World Scientist, 1997), pp. 280-289.
G. D. Bernard, Dark-processes following photoconversion of butterfly rhodopsins. Biophys. Struct. Mech. 9, 277-286 (1983).
D. G. Stavenga, J. Numan, J. Tinbergen, J. Kuiper, Insect pupil mechanisms. II. Pigment migration in retinula cells of butterflies. J Comp Phys A 113, 73-93 (1977).
A. G. Palacios, T. H. Goldsmith, G. D. Bernard, Sensitivity of cones from a cyprinid fish (Danio aequipinnatus) to ultraviolet and visible light. Vis. Neurosci. 13, 411-421 (1996).
Y. Isogai et al., Molecular organization of vomeronasal chemoreception. Nature 478, 241-245 (2011).