[en] In male Japanese quail, brain aromatase is crucial for the hormonal activation of sexual behavior, but the sites producing neuro-estrogens critical for these behaviors have not been completely identified. This study examined the function of aromatase expressed in several nuclei of the social behavior network on a measure of sexual motivation known as the frequency of rhythmic cloacal sphincter movements (RCSM) and on copulatory behavior. Sexually experienced castrated males chronically treated with testosterone were stereotaxically implanted with the aromatase inhibitor vorozole (VOR), or cholesterol as control, and tested for sexual behavior. In experiment 1, males were implanted in the medial preoptic nucleus (POM) with VOR, a manipulation known to reduce the expression of copulatory behavior. This experiment served as positive control, but also showed that VOR implanted in the dorsomedial or lateral portions of the POM similarly inhibits male copulatory behavior compared to control implants. In experiments 2 to 4, males received stereotaxic implants of VOR in the periaqueductal gray (PAG), the nucleus taeniae of the amygdala (TnA) and the ventromedial nucleus of the hypothalamus (VMN), respectively. Sexual behavior was affected only in individuals where VOR was implanted in the PAG: these males displayed significantly lower frequencies of cloacal contact movements, the last step of the copulatory sequence. Inhibition of aromatase in the TnA and VMN did not alter copulatory ability. Overall, RCSM frequency remained unaffected by VOR regardless of implantation site. Together, these results suggest that neuro-estrogens produced in the POM contribute the most to the control of male copulatory behavior, while aromatase expressed in the PAG might also participate to premotor aspects of male copulatory behavior.
Research Center/Unit :
GIGA Neurosciences-Neuroendocrinology - ULiège
Disciplines :
Neurosciences & behavior
Author, co-author :
Court, Lucas ; Université de Liège - ULiège > GIGA > GIGA Neurosciences - Neuroendocrinology
Balthazart, Jacques ; ULiège - Université de Liège - GIGA > GIGA - GIGA Neurosciences > Neuroendocrinology
Ball, G.F.
Cornil, Charlotte ; Université de Liège - ULiège > GIGA > GIGA Neurosciences - Neuroendocrinology
Language :
English
Title :
Role of aromatase in distinct brain nuclei of the social behavior network in the expression of sexual behavior in male Japanese quail
Publication date :
2022
Journal title :
Journal of Neuroendocrinology
ISSN :
0953-8194
eISSN :
1365-2826
Publisher :
Wiley, Malden, United States - Massachusetts
Volume :
34
Pages :
e13127.
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique NIH - National Institutes of Health
Newman SW. The medial extended amygdala in male reproductive behavior: a node in the mammalian social behavior network. Ann N Y Acad Sci. 1999;877(1):242-257.
Goodson JL. The vertebrate social behavior network: evolutionary themes and variations. Horm Behav. 2005;48(1):11-22.
Goodson JL, Kabelik D. Dynamic limbic networks and social diversity in vertebrates: from neural context to neuromodulatory patterning. Front Neuroendocrinol. 2009;30(4):429-441.
Robinson GE, Fernald RD, Clayton DF. Genes and social behavior. Science. 2008;322(5903):896-900. doi:10.1126/science.1159277
O'Connell LA, Hofmann HA. The vertebrate mesolimbic reward system and social behavior network: a comparative synthesis. J Comp Neurol. 2011;519(18):3599-3639. doi:10.1002/cne.22735
Balthazart J, Ball GF. Topography in the preoptic region: differential regulation of appetitive and consummatory male sexual behaviors. Front Neuroendocrinol. 2007;28(4):161-178.
Been LE, Petrulis A. Dissociated functional pathways for appetitive and consummatory reproductive behaviors in male Syrian hamsters. Horm Behav. 2012;61(2):204-211. doi:10.1016/j.yhbeh.2011.12.007
Balthazart J, Ball G. Brain Aromatase, Estrogens, and Behavior. Oxford University Press; 2012.
Hull EM, Dominguez JM. Sexual behavior in male rodents. Horm Behav. 2007;52(1):45-55. doi:10.1016/j.yhbeh.2007.03.030
Foidart A, Reid J, Absil P, Yoshimura N, Harada N, Balthazart J. Critical re-examination of the distribution of aromatase-immunoreactive cells in the quail forebrain using antibodies raised against human placental aromatase and against the recombinant quail, mouse or human enzyme. J Chem Neuroanat. 1995;8(4):267-282.
Wu MV, Manoli DS, Fraser EJ, et al. Estrogen masculinizes neural pathways and sex-specific behaviors. Cell. 2009;139(1):61-72.
Stanić D, Dubois S, Chua HK, et al. Characterization of aromatase expression in the adult male and female mouse brain. I. Coexistence with oestrogen receptors α and β, and androgen receptors. PLoS One. 2014;9(3):e90451. doi:10.1371/journal.pone.0090451
Callard GV, Petro Z, Ryan KJ. Conversion of androgen to estrogen and other steroids in the vertebrate brain. Am Zool. 1978;18(3):511-523. doi:10.1093/icb/18.3.511
Roselli CE, Stormshak F, Resko JA. Distribution and regulation of aromatase activity in the ram hypothalamus and amygdala. Brain Res. 1998;811(1–2):105-110. doi:10.1016/s0006-8993(98)00995-0
Roselli CE, Resko JA. Cytochrome P450 aromatase (CYP19) in the non-human primate brain: distribution, regulation, and functional significance. J Steroid Biochem Mol Biol. 2001;79(1):247-253. doi:10.1016/S0960-0760(01)00141-8
Biegon A, Kim SW, Alexoff DL, et al. Unique distribution of aromatase in the human brain: in vivo studies with PET and [N-methyl-11C]vorozole. Synapse (New York, NY). 2010;64(11):801-807. doi:10.1002/syn.20791
Biegon A. In vivo visualization of aromatase in animals and humans. Front Neuroendocrinol. 2016;40:42-51. doi:10.1016/j.yfrne.2015.10.001
Biegon A, Alexoff DL, Kim SW, et al. Aromatase imaging with [N-methyl-11C]vorozole PET in healthy men and women. J Nucl Med. 2015;56(4):580-585. doi:10.2967/jnumed.114.150383
Simerly R, Swanson L, Chang C, Muramatsu M. Distribution of androgen and estrogen receptor mRNA-containing cells in the rat brain: an in situ hybridization study. J Comp Neurol. 1990;294(1):76-95.
Lehman MN, Ebling FJ, Moenter SM, Karsch FJ. Distribution of estrogen receptor-immunoreactive cells in the sheep brain. Endocrinology. 1993;133(2):876-886. doi:10.1210/en.133.2.876
Balthazart J, Gahr M, Surlemont C. Distribution of estrogen receptors in the brain of the Japanese quail: an immunocytochemical study. Brain Res. 1989;501(2):205-214. doi:10.1016/0006-8993(89)90638-0
Voigt C, Ball GF, Balthazart J. Sex differences in the expression of sex steroid receptor mRNA in the quail brain. J Neuroendocrinol. 2009;21(12):1045-1062. doi:10.1111/j.1365-2826.2009.01929.x
Paredes RG, Baum MJ. Role of the medial preoptic area/anterior hypothalamus in the control of masculine sexual behavior. Annu Rev Sex Res. 1997;8(1):68-101. doi:10.1080/10532528.1997.10559919
Panzica GC, Viglietti-Panzica C, Balthazart J. The sexually dimorphic medial preoptic nucleus of quail: a key brain area mediating steroid action on male sexual behavior. Front Neuroendocrinol. 1996;17(1):51-125. doi:10.1006/frne.1996.0002
Clancy AN, Zumpe D, Michael RP. Intracerebral infusion of an aromatase inhibitor, sexual behavior and brain estrogen receptor-like immunoreactivity in intact male rats. Neuroendocrinology. 1995;61(2):98-111. doi:10.1159/000126830
Balthazart J, Evrard L, Surlemont C. Effects of the nonsteroidal inhibitor R76713 on testosterone-induced sexual behavior in the Japanese quail (Coturnix coturnix japonica). Horm Behav. 1990;24(4):510-531.
de Bournonville MP, Vandries LM, Ball GF, Balthazart J, Cornil CA. Site-specific effects of aromatase inhibition on the activation of male sexual behavior in male Japanese quail (Coturnix japonica). Horm Behav. 2019;108:42-49. doi:10.1016/j.yhbeh.2018.12.015
Clancy AN, Zumpe D, Michael RP. Estrogen in the medial preoptic area of male rats facilitates copulatory behavior. Horm Behav. 2000;38(2):86-93. doi:10.1006/hbeh.2000.1602
Sano K, Tsuda MC, Musatov S, Sakamoto T, Ogawa S. Differential effects of site-specific knockdown of estrogen receptor α in the medial amygdala, medial pre-optic area, and ventromedial nucleus of the hypothalamus on sexual and aggressive behavior of male mice. Eur J Neurosci. 2013;37(8):1308-1319.
Lee H, Kim D-W, Remedios R, et al. Scalable control of mounting and attack by Esr1+ neurons in the ventromedial hypothalamus. Nature. 2014;509(7502):627-632. doi:10.1038/nature13169
Unger EK, Burke KJ, Yang CF, Bender KJ, Fuller PM, Shah NM. Medial Amygdalar aromatase neurons regulate aggression in both sexes. Cell Rep. 2015;10(4):453-462.
Huddleston GG, Paisley JC, Clancy AN. Effects of estrogen in the male rat medial amygdala: infusion of an aromatase inhibitor lowers mating and bovine serum albumin-conjugated estradiol implants do not promote mating. Neuroendocrinology. 2006;83(2):106-116. doi:10.1159/000094400
Yamaguchi T, Wei D, Song SC, Lim B, Tritsch NX, Lin D. Posterior amygdala regulates sexual and aggressive behaviors in male mice. Nat Neurosci. 2020;23(9):1111-1124. doi:10.1038/s41593-020-0675-x
Ball GF, Balthazart J. Japanese quail as a model system for studying the neuroendocrine control of reproductive and social behaviors. ILAR J. 2010;51(4):310-325.
Evrard HC, Harada N, Balthazart J. Immunocytochemical localization of aromatase in sensory and integrating nuclei of the hindbrain in Japanese quail (Coturnix japonica). J Comp Neurol. 2004;473(2):194-212. doi:10.1002/cne.20068
Voigt C, Ball GF, Balthazart J. Neuroanatomical specificity of sex differences in expression of aromatase mRNA in the quail brain. J Chem Neuroanat. 2007;33(2):75-86. doi:10.1016/j.jchemneu.2006.12.004
Cornil CA, Ball GF, Balthazart J, Charlier TD. Organizing effects of sex steroids on brain aromatase activity in quail. PloS One. 2011;6(4):e19196.
Court L, Balthazart J, Ball GF, Cornil CA. Effect of chronic intracerebroventricular administration of an aromatase inhibitor on the expression of socio-sexual behaviors in male Japanese quail. Behav Brain Res. 2021;410:113315. doi:10.1016/j.bbr.2021.113315
Taziaux M, Cornil CA, Balthazart J. Aromatase inhibition blocks the expression of sexually-motivated cloacal gland movements in male quail. Behav Processes. 2004;67(3):461-469. doi:10.1016/j.beproc.2004.07.007
Seredynski AL, Balthazart J, Christophe VJ, Ball GF, Cornil CA. Neuroestrogens rapidly regulate sexual motivation but not performance. J Neurosci. 2013;33(1):164-174.
Reiner A, Perkel DJ, Bruce LL, et al. Revised nomenclature for avian telencephalon and some related brainstem nuclei. J Comp Neurol. 2004;473(3):377-414. doi:10.1002/cne.20118
Balthazart J, Schumacher M, Ottinger MA. Sexual differences in the Japanese quail: behavior, morphology, and intracellular metabolism of testosterone. Gen Comp Endocrinol. 1983;51(2):191-207.
Balthazart J, Foidart A, Hendrick JC. The induction by testosterone of aromatase activity in the preoptic area and activation of copulatory behavior. Physiol Behav. 1990;47(1):83-94. doi:10.1016/0031-9384(90)90045-6
Sachs BD. Photoperiodic control of the cloacal gland of the Japanese quail. Science. 1967;157(3785):201-203. doi:10.1126/science.157.3785.201
Kuenzel WJ, Masson M. A Stereotaxic Atlas of the Brain of the Chick (Gallus Domesticus). Johns Hopkins University Press; 1988.
Baylé J-D, Ramade F, Oliver J. Stereotaxic topography of the brain of the quail (Coturnix coturnix japonica). J Physiol. 1974;68(2):219–241.
Absil P, Braquenier JB, Balthazart J, Ball GF. Effects of lesions of nucleus taeniae on appetitive and consummatory aspects of male sexual behavior in Japanese quail. Brain Behav Evol. 2002;60(1):13-35.
Thompson RR, Goodson JL, Ruscio MG, Adkins-Regan E. Role of the archistriatal nucleus taeniae in the sexual behavior of male Japanese quail (Coturnix japonica): a comparison of function with the medial nucleus of the amygdala in mammals. Brain Behav Evol. 1998;51(4):215-229. doi:10.1159/000006539
Davidson JM. Activation of the male rat's sexual behavior by intracerebral implantation of androgen. Endocrinology. 1966;79(4):783-794. doi:10.1210/endo-79-4-783
Davidson JM. Characteristics of sex behaviour in male rats following castration. Anim Behav. 1966;14(2):266-272. doi:10.1016/S0003-3472(66)80082-9
Beach FA. Characteristics of masculine "sex drive". In: Jones MR, ed. Nebraska Symposium on Motivation. University of Nebraska Press; 1956:1-32.
Balthazart J, Ball GF. The Japanese quail as a model system for the investigation of steroid-catecholamine interactions mediating appetitive and consummatory aspects of male sexual behavior. Annu Rev Sex Res. 1998;9:96-176.
Seiwert CM, Adkins-Regan E. The foam production system of the male Japanese quail: characterization of structure and function. Brain Behav Evol. 1998;52(2):61-80. doi:10.1159/000006553
Adkins EK, Alder NT. Hormonal control of behavior in the Japanese quail. J Comp Physiol Psychol. 1972;81(1):27.
Hutchison RE. Hormonal differentiation of sexual behavior in Japanese quail. Horm Behav. 1978;11(3):363-387.
Carere C, Ball GF, Balthazart J. Sex differences in projections from preoptic area aromatase cells to the periaqueductal gray in Japanese quail. J Comp Neurol. 2007;500(5):894-907. doi:10.1002/cne.21210
Cornil CA, Ball GF, Balthazart J. Differential control of appetitive and consummatory sexual behavior by neuroestrogens in male quail. Horm Behav. 2018;104:15-31. doi:10.1016/j.yhbeh.2018.02.006
Balthazart J, Absil P, Gerard M, Appeltants D, Ball GF. Appetitive and consummatory male sexual behavior in Japanese quail are differentially regulated by subregions of the preoptic medial nucleus. J Neurosci. 1998;18(16):6512-6527.
Taziaux M, Cornil CA, Dejace C, Arckens L, Ball GF, Balthazart J. Neuroanatomical specificity in the expression of the immediate early gene c-fos following expression of appetitive and consummatory male sexual behaviour in Japanese quail. Eur J Neurosci. 2006;23(7):1869-1887. doi:10.1111/j.1460-9568.2006.04719.x
Iyilikci O, Balthazart J, Ball GF. Medial preoptic regulation of the ventral tegmental area related to the control of Sociosexual behaviors. eNeuro. 2016;3(6):ENEURO.0283-16.2016. doi:10.1523/eneuro.0283-16.2016
Absil P, Riters LV, Balthazart J. Preoptic aromatase cells project to the mesencephalic central gray in the male Japanese quail (Coturnix japonica). Horm Behav. 2001;40(3):369-383. doi:10.1006/hbeh.2001.1702
Singh RP, Sastry KV, Pandey NK, et al. The role of the male cloacal gland in reproductive success in Japanese quail (Coturnix japonica). Reprod Fertil Dev. 2012;24(2):405-409. doi:10.1071/rd11057
Kondo Y. Lesions of the medial amygdala produce severe impairment of copulatory behavior in sexually inexperienced male rats. Physiol Behav. 1992;51(5):939-943. doi:10.1016/0031-9384(92)90074-c
Kondo Y, Sachs BD, Sakuma Y. Importance of the medial amygdala in rat penile erection evoked by remote stimuli from estrous females. Behav Brain Res. 1997;88(2):153-160. doi:10.1016/s0166-4328(97)02287-0
Bandler R, Shipley MT. Columnar organization in the midbrain periaqueductal gray: modules for emotional expression? Trends Neurosci. 1994;17(9):379-389. doi:10.1016/0166-2236(94)90047-7
Schwartz-Giblin S, McCarthy MM. A sexual column in the PAG? Trends Neurosci. 1995;18(3):129.
Kingsbury MA, Kelly AM, Schrock SE, Goodson JL. Mammal-like organization of the avian midbrain central gray and a reappraisal of the intercollicular nucleus. PloS One. 2011;6(6):e20720. doi:10.1371/journal.pone.0020720
Haakenson CM, Balthazart J, Ball GF. Effects of inactivation of the periaqueductal Gray on Song production in testosterone-treated male canaries (Serinus canaria). eNeuro. 2020;7(4):ENEURO.0048-20.2020. doi:10.1523/ENEURO.0048-20.2020
Nyby J, Matochik JA, Barfield RJ. Intracranial androgenic and estrogenic stimulation of male-typical behaviors in house mice (Mus domesticus). Horm Behav. 1992;26(1):24-45. doi:10.1016/0018-506X(92)90029-U
Melo AI, Chirino R, Jimenez A, Cuamatzi E, Beyer C, Gonzalez-Mariscal G. Effect of forebrain implants of testosterone or estradiol on scent-marking and sexual behavior in male and female rabbits. Horm Behav. 2008;54(5):676-683. doi:10.1016/j.yhbeh.2008.07.006
Harding SM, McGinnis MY. Effects of testosterone in the VMN on copulation, partner preference, and vocalizations in male rats. Horm Behav. 2003;43(2):327-335. doi:10.1016/S0018-506X(02)00049-1
Harding SM, McGinnis MY. Androgen receptor blockade in the MPOA or VMN: effects on male sociosexual behaviors. Physiol Behav. 2004;81(4):671-680. doi:10.1016/j.physbeh.2004.03.008
Wood RI, Newman SW. The medial amygdaloid nucleus and medial preoptic area mediate steroidal control of sexual behavior in the male Syrian hamster. Horm Behav. 1995;29(3):338-353. doi:10.1006/hbeh.1995.1024
Wood RI, Coolen LM. Integration of chemosensory and hormonal cues is essential for sexual behaviour in the male Syrian hamster: role of the medial amygdaloid nucleus. Neuroscience. 1997;78(4):1027-1035. doi:10.1016/s0306-4522(96)00629-x
Coolen LM, Wood RI. Testosterone stimulation of the medial preoptic area and medial amygdala in the control of male hamster sexual behavior: redundancy without amplification. Behav Brain Res. 1999;98(1):143-153. doi:10.1016/s0166-4328(98)00063-1
Wood RI, Williams SJ. Steroidal control of male hamster sexual behavior in me and MPOA: effects of androgen dose and tamoxifen. Physiol Behav. 2001;72(5):727-733. doi:10.1016/s0031-9384(01)00427-9
Wood RI. Estradiol, but not dihydrotestosterone, in the medial amygdala facilitates male hamster sex behavior. Physiol Behav. 1996;59(4–5):833-841. doi:10.1016/0031-9384(95)02204-x
Rasia-Filho AA, Peres TM, Cubilla-Gutierrez FH, Lucion AB. Effect of estradiol implanted in the corticomedial amygdala on the sexual behavior of castrated male rats. Braz J Med Biol Res. 1991;24(10):1041-1049.
Baum MJ, Tobet SA, Starr MS, Bradshaw WG. Implantation of dihydrotestosterone propionate into the lateral septum or medial amygdala facilitates copulation in castrated male rats given estradiol systemically. Horm Behav. 1982;16(2):208-223. doi:10.1016/0018-506X(82)90020-4
McGinnis MY, Williams GW, Lumia AR. Inhibition of male sex behavior by androgen receptor blockade in preoptic area or hypothalamus, but not amygdala or septum. Physiol Behav. 1996;60(3):783-789. doi:10.1016/0031-9384(96)00088-1
Huddleston GG, Michael RP, Zumpe D, Clancy AN. Estradiol in the male rat amygdala facilitates mounting but not ejaculation. Physiol Behav. 2003;79(2):239-246. doi:10.1016/S0031-9384(03)00114-8
Hull EM, Rodrı́guez-Manzo G. Male sexual behavior. In: Pfaff DW, Joels M, eds. Hormones, Brain and Behavior. Third ed. Academic Press; 2017:1-57:chap 1.
Yang CF, Chiang MC, Gray DC, et al. Sexually dimorphic neurons in the ventromedial hypothalamus govern mating in both sexes and aggression in males. Cell. 2013;153(4):896-909. doi:10.1016/j.cell.2013.04.017
Bayless DW, Yang T, Mason MM, Susanto AAT, Lobdell A, Shah NM. Limbic neurons shape sex recognition and social behavior in sexually naive males. Cell. 2019;176(5):1190–1205. doi:10.1016/j.cell.2018.12.041
Mills AD, Crawford LL, Domjan M, Faure JM. The behavior of the Japanese or domestic quail Coturnix japonica. Neurosci Biobehav Rev. 1997;21(3):261-281.