BNT162b2; COVID-19; MRNA-1273; SARS-CoV-2; immunosuppressed; inborn errors of immunity; transplantation; vaccine; Immunology; Immunology and Allergy
Abstract :
[en] It is critical to protect immunocompromised patients against COVID-19 with effective SARS-CoV-2 vaccination as they have an increased risk of developing severe disease. This is challenging, however, since effective mRNA vaccination requires the successful cooperation of several components of the innate and adaptive immune systems, both of which can be severely affected/deficient in immunocompromised people. In this article, we first review current knowledge on the immunobiology of SARS-COV-2 mRNA vaccination in animal models and in healthy humans. Next, we summarize data from early trials of SARS-COV-2 mRNA vaccination in patients with secondary or primary immunodeficiency. These early clinical trials identified common predictors of lower response to the vaccine such as anti-CD19, anti-CD20 or anti-CD38 therapies, low (naive) CD4+ T-cell counts, genetic or therapeutic Bruton tyrosine kinase deficiency, treatment with antimetabolites, CTLA4 agonists or JAK inhibitors, and vaccination with BNT162b2 versus mRNA1273 vaccine. Finally, we review the first data on third dose mRNA vaccine administration in immunocompromised patients and discuss recent strategies of temporarily holding/pausing immunosuppressive medication during vaccination.
Disciplines :
Immunology & infectious disease
Author, co-author :
BARON, Frédéric ; Centre Hospitalier Universitaire de Liège - CHU > > Service d'hématologie clinique
Ariën, Kevin K; Virology Unit, Institute of Tropical Medicine Antwerp, Antwerp, Belgium ; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
Kemlin, Delphine; Department of Nephrology, Dialysis and Renal Transplantation, Hôpital Erasme, Université libre de Bruxelles, Brussels, Belgium
Gerbaux, Margaux; Institute for Medical Immunology and ULB Center for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium ; Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium
BEGUIN, Yves ; Centre Hospitalier Universitaire de Liège - CHU > > Service d'hématologie clinique
Marchant, Arnaud; Institute for Medical Immunology and ULB Center for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium
Humblet-Baron, Stéphanie; Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium
Language :
English
Title :
Insights From Early Clinical Trials Assessing Response to mRNA SARS-CoV-2 Vaccination in Immunocompromised Patients.
Plotkin SA Plotkin SL. The Development of Vaccines: How the Past Led to the Future. Nat Rev Microbiol (2011) 9:889–93. doi: 10.1038/nrmicro2668
Sallusto F Lanzavecchia A Araki K Ahmed R. From Vaccines to Memory and Back. Immunity (2010) 33:451–63. doi: 10.1016/j.immuni.2010.10.008
Plotkin SA. Correlates of Protection Induced by Vaccination. Clin Vaccine Immunol (2010) 17:1055–65. doi: 10.1128/CVI.00131-10
McMahan K Yu J Mercado NB Loos C Tostanoski LH Chandrashekar A et al. Correlates of Protection Against SARS-CoV-2 in Rhesus Macaques. Nature (2021) 590:630–4. doi: 10.1038/s41586-020-03041-6
Corbett KS Nason MC Flach B Gagne M O’Connell S Johnston TS et al. Immune Correlates of Protection by mRNA-1273 Vaccine Against SARS-CoV-2 in Nonhuman Primates. Science (2021) 373:eabj0299. doi: 10.1126/science.abj0299
Sadarangani M Marchant A Kollmann TR. Immunological Mechanisms of Vaccine-Induced Protection Against COVID-19 in Humans. Nat Rev Immunol (2021) 21:475–84. doi: 10.1038/s41577-021-00578-z
Feng S Phillips DJ White T Sayal H Aley PK Bibi S et al. Correlates of Protection Against Symptomatic and Asymptomatic SARS-CoV-2 Infection. Nat Med (2021) 27:2032–40. doi: 10.1038/s41591-021-01540-1
Khoury DS Cromer D Reynaldi A Schlub TE Wheatley AK Juno JA et al. Neutralizing Antibody Levels are Highly Predictive of Immune Protection From Symptomatic SARS-CoV-2 Infection. Nat Med (2021) 27:1205–11. doi: 10.1038/s41591-021-01377-8
Gilbert PB Montefiori DC McDermott AB Fong Y Benkeser D Deng W et al. Immune Correlates Analysis of the mRNA-1273 COVID-19 Vaccine Efficacy Clinical Trial. Science (2022) 375:43–50. doi: 10.1126/science.abm3425
Mesin L Ersching J Victora GD. Germinal Center B Cell Dynamics. Immunity (2016) 45:471–82. doi: 10.1016/j.immuni.2016.09.001
Crotty S. T Follicular Helper Cell Biology: A Decade of Discovery and Diseases. Immunity (2019) 50:1132–48. doi: 10.1016/j.immuni.2019.04.011
Blanchard-Rohner G. Vaccination in Children With Autoimmune Disorders and Treated With Various Immunosuppressive Regimens: A Comprehensive Review and Practical Guide. Front Immunol (2021) 12:711637. doi: 10.3389/fimmu.2021.711637
Castermans E Hannon M Dutrieux J Humblet-Baron S Seidel L Cheynier R et al. Thymic Recovery After Allogeneic Hematopoietic Cell Transplantation With non-Myeloablative Conditioning is Limited to Patients Younger Than 60 Years of Age. Haematologica (2011) 96:298–306. doi: 10.3324/haematol.2010.029702
Hannon M Beguin Y Ehx G Servais S Seidel L Graux C et al. Immune Recovery After Allogeneic Hematopoietic Stem Cell Transplantation Following Flu-TBI Versus TLI-ATG Conditioning. Clin Cancer Res (2015) 21:3131–9. doi: 10.1158/1078-0432.CCR-14-3374
Hassold N Brichler S Ouedraogo E Leclerc D Carroue S Gater Y et al. Impaired Antibody Response to COVID-19 Vaccination in Advanced HIV Infection. AIDS (2022). doi: 10.1097/QAD.0000000000003166
Johnstone J Parsons R Botelho F Millar J McNeil S Fulop T et al. T-Cell Phenotypes Predictive of Frailty and Mortality in Elderly Nursing Home Residents. J Am Geriatr Soc (2017) 65:153–9. doi: 10.1111/jgs.14507
Zeiser R Negrin RS. Interleukin-2 Receptor Downstream Events in Regulatory T Cells: Implications for the Choice of Immunosuppressive Drug Therapy. Cell Cycle (2008) 7:458–62. doi: 10.4161/cc.7.4.5454
Ehx G Ritacco C Hannon M Dubois S Delens L Willems E et al. Comprehensive Analysis of the Immunomodulatory Effects of Rapamycin on Human T Cells in Graft-Versus-Host Disease Prophylaxis. Am J Transplant (2021) 21:2662–74. doi: 10.1111/ajt.16505
Ratzinger F Haslacher H Poeppl W Hoermann G Kovarik JJ Jutz S et al. Azithromycin Suppresses CD4(+) T-Cell Activation by Direct Modulation of mTOR Activity. Sci Rep (2014) 4:7438. doi: 10.1038/srep07438
Arnold DE Chellapandian D Leiding JW. The Use of Biologic Modifiers as a Bridge to Hematopoietic Cell Transplantation in Primary Immune Regulatory Disorders. Front Immunol (2021) 12:692219. doi: 10.3389/fimmu.2021.692219
Lian J Yue Y Yu W Zhang Y. Immunosenescence: A Key Player in Cancer Development. J Hematol Oncol (2020) 13:151. doi: 10.1186/s13045-020-00986-z
Anolik JH Friedberg JW Zheng B Barnard J Owen T Cushing E et al. B Cell Reconstitution After Rituximab Treatment of Lymphoma Recapitulates B Cell Ontogeny. Clin Immunol (2007) 122:139–45. doi: 10.1016/j.clim.2006.08.009
van Dam LS Oskam JM Kamerling SWA Arends EJ Bredewold OW Berkowska MA et al. Highly Sensitive Flow Cytometric Detection of Residual B-Cells After Rituximab in Anti-Neutrophil Cytoplasmic Antibodies-Associated Vasculitis Patients. Front Immunol (2020) 11:566732. doi: 10.3389/fimmu.2020.566732
Pardi N Hogan MJ Naradikian MS Parkhouse K Cain DW Jones L et al. Nucleoside-Modified mRNA Vaccines Induce Potent T Follicular Helper and Germinal Center B Cell Responses. J Exp Med (2018) 215:1571–88. doi: 10.1084/jem.20171450
Kowalski PS Rudra A Miao L Anderson DG. Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery. Mol Ther (2019) 27:710–28. doi: 10.1016/j.ymthe.2019.02.012
Hogan MJ Pardi N. mRNA Vaccines in the COVID-19 Pandemic and Beyond. Annu Rev Med (2021) 73:17–39. doi: 10.1146/annurev-med-042420-112725
Chakraborty C Sharma AR Bhattacharya M Lee S-S. From COVID-19 to Cancer mRNA Vaccines: Moving From Bench to Clinic in the Vaccine Landscape. Front Immunol (2021) 12:679344. doi: 10.3389/fimmu.2021.679344
Ndeupen S Qin Z Jacobsen S Bouteau A Estanbouli H Igyártó BZ. The mRNA-LNP Platform’s Lipid Nanoparticle Component Used in Preclinical Vaccine Studies is Highly Inflammatory. iScience (2021) 24:103479. doi: 10.1016/j.isci.2021.103479
Lederer K Castaño D Gómez Atria D Oguin TH 3rdWang S Manzoni TB et al. SARS-CoV-2 mRNA Vaccines Foster Potent Antigen-Specific Germinal Center Responses Associated With Neutralizing Antibody Generation. Immunity (2020) 53:1281–95.e5. doi: 10.1016/j.immuni.2020.11.009
Vogel AB Kanevsky I Che Y Swanson KA Muik A Vormehr M et al. BNT162b Vaccines Protect Rhesus Macaques From SARS-CoV-2. Nature (2021) 592:283–9. doi: 10.1038/s41586-021-03275-y
Pallesen J Wang N Corbett KS Wrapp D Kirchdoerfer RN Turner HL et al. Immunogenicity and Structures of a Rationally Designed Prefusion MERS-CoV Spike Antigen. Proc Natl Acad Sci USA (2017) 114:E7348–57. doi: 10.1073/pnas.1707304114
Corbett KS Edwards DK Leist SR Abiona OM Boyoglu-Barnum S Gillespie RA et al. SARS-CoV-2 mRNA Vaccine Design Enabled by Prototype Pathogen Preparedness. Nature (2020) 586:567–71. doi: 10.1038/s41586-020-2622-0
Corbett KS Flynn B Foulds KE Francica JR Boyoglu-Barnum S Werner AP et al. Evaluation of the mRNA-1273 Vaccine Against SARS-CoV-2 in Nonhuman Primates. N Engl J Med (2020) 383:1544–55. doi: 10.1056/NEJMoa2024671
DiPiazza AT Leist SR Abiona OM Moliva JI Werner A Minai M et al. COVID-19 Vaccine mRNA-1273 Elicits a Protective Immune Profile in Mice That is Not Associated With Vaccine-Enhanced Disease Upon SARS-CoV-2 Challenge. Immunity (2021) 54:1869–82.e6. doi: 10.1016/j.immuni.2021.06.018
Vogelzang A McGuire HM Yu D Sprent J Mackay CR King C. A Fundamental Role for Interleukin-21 in the Generation of T Follicular Helper Cells. Immunity (2008) 29:127–37. doi: 10.1016/j.immuni.2008.06.001
Gong F Zheng T Zhou P. T Follicular Helper Cell Subsets and the Associated Cytokine IL-21 in the Pathogenesis and Therapy of Asthma. Front Immunol (2019) 10:2918. doi: 10.3389/fimmu.2019.02918
Gagne M Corbett KS Flynn BJ Foulds KE Wagner DA Andrew SF et al. Protection From SARS-CoV-2 Delta One Year After mRNA-1273 Vaccination in Rhesus Macaques Coincides With Anamnestic Antibody Response in the Lung. Cell (2022) 185:113–30.e15. doi: 10.1016/j.cell.2021.12.002
Corbett KS Gagne M Wagner DA O’ Connell S Narpala SR Flebbe DR et al. Protection Against SARS-CoV-2 Beta Variant in mRNA-1273 Vaccine-Boosted Nonhuman Primates. Science (2021) 374:1343–53. doi: 10.1126/science.abl8912
Sahin U Muik A Derhovanessian E Vogler I Kranz LM Vormehr M et al. COVID-19 Vaccine BNT162b1 Elicits Human Antibody and T(H)1 T Cell Responses. Nature (2020) 586:594–9. doi: 10.1038/s41586-020-2814-7
Pannus P Neven KY De Craeye S Heyndrickx L Kerckhove SV Georges D et al. Poor Antibody Response to BioNTech/Pfizer COVID-19 Vaccination in SARS-CoV-2 Naïve Residents of Nursing Homes. medRxiv (2021), 2021.06.08.21258366. doi: 10.1101/2021.06.08.21258366
Amanat F Thapa M Lei T Ahmed SMS Adelsberg DC Carreño JM et al. SARS-CoV-2 mRNA Vaccination Induces Functionally Diverse Antibodies to NTD, RBD, and S2. Cell (2021) 184:3936–48.e10. doi: 10.1016/j.cell.2021.06.005
Goel RR Painter MM Apostolidis SA Mathew D Meng W Rosenfeld AM et al. mRNA Vaccination Induces Durable Immune Memory to SARS-CoV-2 With Continued Evolution to Variants of Concern. bioRxiv (2021). doi: 10.1101/2021.08.23.457229
Sahin U Muik A Vogler I Derhovanessian E Kranz LM Vormehr M et al. BNT162b2 Vaccine Induces Neutralizing Antibodies and Poly-Specific T Cells in Humans. Nature (2021) 595:572–7. doi: 10.1038/s41586-021-03653-6
Mudd PA Minervina AA Pogorelyy MV Turner JS Kim W Kalaidina E et al. SARS-CoV-2 mRNA Vaccination Elicits Robust and Persistent T Follicular Helper Cell Response in Humans. bioRxiv (2021), 2021.09.08.459485. doi: 10.1101/2021.09.08.459485
Oberhardt V Luxenburger H Kemming J Schulien I Ciminski K Giese S et al. Rapid and Stable Mobilization of CD8(+) T Cells by SARS-CoV-2 mRNA Vaccine. Nature (2021) 597:268–73. doi: 10.1038/s41586-021-03841-4
Painter MM Mathew D Goel RR Apostolidis SA Pattekar A Kuthuru O et al. Rapid Induction of Antigen-Specific CD4(+) T cells is Associated With Coordinated Humoral and Cellular Immunity to SARS-CoV-2 mRNA Vaccination. Immunity (2021) 54:2133–42.e3. doi: 10.1016/j.immuni.2021.08.001
Mateus J Dan JM Zhang Z Rydyznski Moderbacher C Lammers M Goodwin B et al. Low-Dose mRNA-1273 COVID-19 Vaccine Generates Durable Memory Enhanced by Cross-Reactive T Cells. Science (2021) 374:6566. doi: 10.1126/science.abj9853
Gaebler C Wang Z Lorenzi JCC Muecksch F Finkin S Tokuyama M et al. Evolution of Antibody Immunity to SARS-CoV-2. Nature (2021) 591:639–44. doi: 10.1038/s41586-021-03207-w
Abayasingam A Balachandran H Agapiou D Hammoud M Rodrigo C Keoshkerian E et al. Long-Term Persistence of RBD(+) Memory B Cells Encoding Neutralizing Antibodies in SARS-CoV-2 Infection. Cell Rep Med (2021) 2:100228. doi: 10.1016/j.xcrm.2021.100228
Sokal A Barba-Spaeth G Fernández I Broketa M Azzaoui I de la Selle A et al. mRNA Vaccination of Naive and COVID-19-Recovered Individuals Elicits Potent Memory B Cells That Recognize SARS-CoV-2 Variants. Immunity (2021) 54:2893–907. doi: 10.1016/j.immuni.2021.09.011
Terpos E Trougakos IP Karalis V Ntanasis-Stathopoulos I Sklirou AD Bagratuni T et al. Comparison of Neutralizing Antibody Responses Against SARS-CoV-2 in Healthy Volunteers Who Received the BNT162b2 mRNA or the AZD1222 Vaccine: Should the Second AZD1222 Vaccine Dose be Given Earlier? Am J Hematol (2021) 96:E321–4. doi: 10.1002/ajh.26248
Richards NE Keshavarz B Workman LJ Nelson MR Platts-Mills TAE Wilson JM. Comparison of SARS-CoV-2 Antibody Response by Age Among Recipients of the BNT162b2 vs the mRNA-1273 Vaccine. JAMA Netw Open (2021) 4:e2124331. doi: 10.1001/jamanetworkopen.2021.24331
Steensels D Pierlet N Penders J Mesotten D Heylen L. Comparison of SARS-CoV-2 Antibody Response Following Vaccination With BNT162b2 and mRNA-1273. JAMA (2021) 326:1533–5. doi: 10.1001/jama.2021.15125
Naranbhai V Garcia-Beltran WF Chang CC Mairena CB Thierauf JC Kirkpatrick G et al. Comparative Immunogenicity and Effectiveness of mRNA-1273, BNT162b2 and Ad26.COV2.S COVID-19 Vaccines. medRxiv (2021). doi: 10.1101/2021.07.18.21260732
Kaplonek P Cizmeci D Fischinger S Collier A-R Suscovich T Linde C et al. Subtle Immunological Differences in mRNA-1273 and BNT162b2 COVID-19 Vaccine Induced Fc-Functional Profiles. bioRxiv (2021). doi: 10.1101/2021.08.31.458247
Dickerman BA Gerlovin H Madenci AL Kurgansky KE Ferolito BR Figueroa Muñiz MJ et al. Comparative Effectiveness of BNT162b2 and mRNA-1273 Vaccines in U.S. Veterans. N Engl J Med (2021) 386:105–15. doi: 10.1056/NEJMoa2115463
Tsang JS Schwartzberg PL Kotliarov Y Biancotto A Xie Z Germain RN et al. Global Analyses of Human Immune Variation Reveal Baseline Predictors of Postvaccination Responses. Cell (2014) 157:499–513. doi: 10.1016/j.cell.2014.03.031
Kotliarov Y Sparks R Martins AJ Mulè MP Lu Y Goswami M et al. Broad Immune Activation Underlies Shared Set Point Signatures for Vaccine Responsiveness in Healthy Individuals and Disease Activity in Patients With Lupus. Nat Med (2020) 26:618–29. doi: 10.1038/s41591-020-0769-8
Liston A Humblet-Baron S Duffy D Goris A. Human Immune Diversity: From Evolution to Modernity. Nat Immunol (2021) 22:1479–89. doi: 10.1038/s41590-021-01058-1
Arunachalam PS Scott MKD Hagan T Li C Feng Y Wimmers F et al. Systems Vaccinology of the BNT162b2 mRNA Vaccine in Humans. Nature (2021) 596:410–6. doi: 10.1038/s41586-021-03791-x
Bergamaschi C Terpos E Rosati M Angel M Bear J Stellas D et al. Systemic IL-15, IFN-γ, and IP-10/CXCL10 Signature Associated With Effective Immune Response to SARS-CoV-2 in BNT162b2 mRNA Vaccine Recipients. Cell Rep (2021) 36:109504. doi: 10.1016/j.celrep.2021.109504
Maniscalco GT Manzo V Ferrara AL Perrella A Di Battista M Salvatore S et al. Interferon Beta-1a Treatment Promotes SARS-CoV-2 mRNA Vaccine Response in Multiple Sclerosis Subjects. Mult Scler Relat Disord (2021) 58:103455. doi: 10.1016/j.msard.2021.103455
Pitzalis M Idda ML Lodde V Loizedda A Lobina M Zoledziewska M et al. Effect of Different Disease-Modifying Therapies on Humoral Response to BNT162b2 Vaccine in Sardinian Multiple Sclerosis Patients. Front Immunol (2021) 12:781843. doi: 10.3389/fimmu.2021.781843
Vanderbeke L Van Mol P Van Herck Y De Smet F Humblet-Baron S Martinod K et al. Monocyte-Driven Atypical Cytokine Storm and Aberrant Neutrophil Activation as Key Mediators of COVID-19 Disease Severity. Nat Commun (2021) 12:4117. doi: 10.1038/s41467-021-24360-w
García-Suárez J de la Cruz J Cedillo Á Llamas P Duarte R Jiménez-Yuste V et al. Impact of Hematologic Malignancy and Type of Cancer Therapy on COVID-19 Severity and Mortality: Lessons From a Large Population-Based Registry Study. J Hematol Oncol (2020) 13:133. doi: 10.1186/s13045-020-00970-7
Meyts I Bucciol G Quinti I Neven B Fischer A Seoane E et al. Coronavirus Disease 2019 in Patients With Inborn Errors of Immunity: An International Study. J Allergy Clin Immunol (2021) 147:520–31. doi: 10.1016/j.jaci.2020.09.010
Heldman MR Kates OS Safa K Kotton CN Georgia SJ Steinbrink JM et al. Changing Trends in Mortality Among Solid Organ Transplant Recipients Hospitalized for Covid-19 During the Course of the Pandemic. Am J Transplant (2021) 22:279–88. doi: 10.1111/ajt.16840
Ponsford MJ Ward TJC Stoneham SM Dallimore CM Sham D Osman K et al. A Systematic Review and Meta-Analysis of Inpatient Mortality Associated With Nosocomial and Community COVID-19 Exposes the Vulnerability of Immunosuppressed Adults. Front Immunol (2021) 12:744696. doi: 10.3389/fimmu.2021.744696
Xhaard A Xhaard C D’Aveni M Salvator H Chabi M-L Berceanu A et al. Risk Factors for a Severe Form of COVID-19 After Allogeneic Haematopoietic Stem Cell Transplantation: A Société Francophone De Greffe De Moelle Et De Thérapie Cellulaire (SFGM-TC) Multicentre Cohort Study. Br J Haematol (2021) 192:e121–4. doi: 10.1111/bjh.17260
Lancman G Mascarenhas J Bar-Natan M. Severe COVID-19 Virus Reactivation Following Treatment for B Cell Acute Lymphoblastic Leukemia. J Hematol Oncol (2020) 13:131. doi: 10.1186/s13045-020-00968-1
Mohan S King K Husain SA Schold J. COVID-19-Associated Mortality Among Kidney Transplant Recipients and Candidates in the United States. Clin J Am Soc Nephrol (2021) 16:1695–703. doi: 10.2215/CJN.02690221
Caillard S Anglicheau D Matignon M Durrbach A Greze C Frimat L et al. An Initial Report From the French SOT COVID Registry Suggests High Mortality Due to COVID-19 in Recipients of Kidney Transplants. Kidney Int (2020) 98:1549–58. doi: 10.1016/j.kint.2020.08.005
Pagano L Salmanton-García J Marchesi F Busca A Corradini P Hoenigl M et al. COVID-19 Infection in Adult Patients With Hematological Malignancies: A European Hematology Association Survey (EPICOVIDEHA). J Hematol Oncol (2021) 14:168. doi: 10.1186/s13045-021-01177-0
Calderón-Parra J Múñez-Rubio E Fernández-Cruz A García Sánchez MC Maderuelo-González E López-Dosil M et al. Incidence, Clinical Presentation, Relapses and Outcome of SARS-CoV-2 Infection in Patients Treated With Anti-CD20 Monoclonal Antibodies. Clin Infect Dis (2021). doi: 10.1093/cid/ciab700
Avouac J Drumez E Hachulla E Seror R Georgin-Lavialle S El Mahou S et al. COVID-19 Outcomes in Patients With Inflammatory Rheumatic and Musculoskeletal Diseases Treated With Rituximab: A Cohort Study. Lancet Rheumatol (2021) 3:e419–26. doi: 10.1016/S2665-9913(21)00059-X
Duléry R Lamure S Delord M Di Blasi R Chauchet A Hueso T et al. Prolonged in-Hospital Stay and Higher Mortality After Covid-19 Among Patients With non-Hodgkin Lymphoma Treated With B-Cell Depleting Immunotherapy. Am J Hematol (2021) 96:934–44. doi: 10.1002/ajh.26209
Bange EM Han NA Wileyto P Kim JY Gouma S Robinson J et al. CD8(+) T Cells Contribute to Survival in Patients With COVID-19 and Hematologic Cancer. Nat Med (2021) 27:1280–9. doi: 10.1038/s41591-021-01386-7
Ambrosioni J Blanco JL Reyes-Urueña JM Davies M-A Sued O Marcos MA et al. Overview of SARS-CoV-2 Infection in Adults Living With HIV. Lancet HIV (2021) 8:e294–305. doi: 10.1016/S2352-3018(21)00070-9
Clark SA Clark LE Pan J Coscia A McKay LGA Shankar S et al. SARS-CoV-2 Evolution in an Immunocompromised Host Reveals Shared Neutralization Escape Mechanisms. Cell (2021) 184:2605–17.e18. doi: 10.1016/j.cell.2021.03.027
Ahearn AJ Maw TT Mehta R Emamaullee J Kim J Blodget E et al. A Programmatic Response, Including Bamlanivimab or Casirivimab-Imdevimab Administration, Reduces Hospitalization and Death in COVID-19 Positive Abdominal Transplant Recipients. Transplantation (2021) 106:e153–7. doi: 10.1097/TP.0000000000003953
Catalano C Servais S Bonvoisin C Couturier B Hildebrand M Etienne I et al. Preemptive Antibody Therapy for Vaccine Breakthrough SARS-CoV-2 Infection in Immunocompromised Patients. Transplantation (2021) 105:e282. doi: 10.1097/TP.0000000000003942
Heftdal LD Knudsen AD Hamm SR Hansen CB Møller DL Pries-Heje M et al. Humoral Response to Two Doses of BNT162b2 Vaccination in People With HIV. J Intern Med (2021). doi: 10.1111/joim.13419
O’Connor MA Erasmus JH Randall S Archer J Lewis TB Brown B et al. A Single Dose SARS-CoV-2 Replicon RNA Vaccine Induces Cellular and Humoral Immune Responses in Simian Immunodeficiency Virus Infected and Uninfected Pigtail Macaques. Front Immunol (2021) 12:800723. doi: 10.3389/fimmu.2021.800723
Spinelli MA Peluso MJ Lynch KL Yun C Glidden DV Henrich TJ et al. Differences in Post-mRNA Vaccination SARS-CoV-2 IgG Concentrations and Surrogate Virus Neutralization Test Response by HIV Status and Type of Vaccine: A Matched Case-Control Observational Study. Clin Infect Dis (2021). doi: 10.1093/cid/ciab1009
Furer V Eviatar T Zisman D Peleg H Paran D Levartovsky D et al. Immunogenicity and Safety of the BNT162b2 mRNA COVID-19 Vaccine in Adult Patients With Autoimmune Inflammatory Rheumatic Diseases and in the General Population: A Multicentre Study. Ann Rheum Dis (2021) 80:1330–8. doi: 10.1136/annrheumdis-2021-220647
Deepak P Kim W Paley MA Yang M Carvidi AB Demissie EG et al. Effect of Immunosuppression on the Immunogenicity of mRNA Vaccines to SARS-CoV-2: A Prospective Cohort Study. Ann Intern Med (2021) 174:1572–85. doi: 10.7326/M21-1757
Braun-Moscovici Y Kaplan M Braun M Markovits D Giryes S Toledano K et al. Disease Activity and Humoral Response in Patients With Inflammatory Rheumatic Diseases After Two Doses of the Pfizer mRNA Vaccine Against SARS-CoV-2. Ann Rheum Dis (2021) 80:1317–21. doi: 10.1136/annrheumdis-2021-220503
Fagni F Simon D Tascilar K Schoenau V Sticherling M Neurath MF et al. COVID-19 and Immune-Mediated Inflammatory Diseases: Effect of Disease and Treatment on COVID-19 Outcomes and Vaccine Responses. Lancet Rheumatol (2021) 3:e724–36. doi: 10.1016/S2665-9913(21)00247-2
Jena A Mishra S Deepak P Kumar MP Sharma A Patel YI et al. Response to SARS-CoV-2 Vaccination in Immune Mediated Inflammatory Diseases: Systematic Review and Meta-Analysis. Autoimmun Rev (2021) 21:102927. doi: 10.1016/j.autrev.2021.102927
Chen RE Gorman MJ Zhu DY Carreño JM Yuan D VanBlargan LA et al. Reduced Antibody Activity Against SARS-CoV-2 B.1.617.2 Delta Virus in Serum of mRNA-Vaccinated Patients Receiving Tumor Necrosis Factor-α Inhibitors. Med (N Y) (2021) 2:1327–41. doi: 10.1016/j.medj.2021.11.004
Hadjadj J Planas D Ouedrani A Buffier S Delage L Nguyen Y et al. Immunogenicity of BNT162b2 Vaccine Against the Alpha and Delta Variants in Immunocompromised Patients With Systemic Inflammatory Diseases. Ann Rheum Dis (2022). doi: 10.1136/annrheumdis-2021-221508
Moor MB Suter-Riniker F Horn MP Aeberli D Amsler J Möller B et al. Humoral and Cellular Responses to mRNA Vaccines Against SARS-CoV-2 in Patients With a History of CD20 B-Cell-Depleting Therapy (RituxiVac): An Investigator-Initiated, Single-Centre, Open-Label Study. Lancet Rheumatol (2021) 3:e789–97. doi: 10.1016/S2665-9913(21)00251-4
Apostolidis SA Kakara M Painter MM Goel RR Mathew D Lenzi K et al. Cellular and Humoral Immune Responses Following SARS-CoV-2 mRNA Vaccination in Patients With Multiple Sclerosis on Anti-CD20 Therapy. Nat Med (2021) 27:1990–2001. doi: 10.1038/s41591-021-01507-2
Maneikis K Šablauskas K Ringelevičiūtė U Vaitekėnaitė V Čekauskienė R Kryžauskaitė L et al. Immunogenicity of the BNT162b2 COVID-19 mRNA Vaccine and Early Clinical Outcomes in Patients With Haematological Malignancies in Lithuania: A National Prospective Cohort Study. Lancet Haematol (2021) 8:e583–92. doi: 10.1016/S2352-3026(21)00169-1
Herzog Tzarfati K Gutwein O Apel A Rahimi-Levene N Sadovnik M Harel L et al. BNT162b2 COVID-19 Vaccine is Significantly Less Effective in Patients With Hematologic Malignancies. Am J Hematol (2021) 96:1195–203. doi: 10.1002/ajh.26284
Malard F Gaugler B Gozlan J Bouquet L Fofana D Siblany L et al. Weak Immunogenicity of SARS-CoV-2 Vaccine in Patients With Hematologic Malignancies. Blood Cancer J (2021) 11:142. doi: 10.1038/s41408-021-00534-z
Marasco V Carniti C Guidetti A Farina L Magni M Miceli R et al. T-Cell Immune Response After mRNA SARS-CoV-2 Vaccines is Frequently Detected Also in the Absence of Seroconversion in Patients With Lymphoid Malignancies. Br J Haematol (2022) 196:548–58. doi: 10.1111/bjh.17877
Herishanu Y Avivi I Aharon A Shefer G Levi S Bronstein Y et al. Efficacy of the BNT162b2 mRNA COVID-19 Vaccine in Patients With Chronic Lymphocytic Leukemia. Blood (2021) 137:3165–73. doi: 10.1182/blood.2021011568
Parry H McIlroy G Bruton R Damery S Tyson G Logan N et al. Impaired Neutralisation of SARS-CoV-2 Delta Variant in Vaccinated Patients With B Cell Chronic Lymphocytic Leukaemia. J Hematol Oncol (2022) 15:3. doi: 10.1186/s13045-021-01219-7
Bagacean C Letestu R Al-Nawakil C Brichler S Lévy V Sritharan N et al. Humoral Response to mRNA Anti-COVID-19 Vaccines BNT162b2 and mRNA-1273 in Patients With Chronic Lymphocytic Leukemia. Blood Adv (2022) 6:207–11. doi: 10.1182/bloodadvances.2021006215
Perry C Luttwak E Balaban R Shefer G Morales MM Aharon A et al. Efficacy of the BNT162b2 mRNA COVID-19 Vaccine in Patients With B-Cell non-Hodgkin Lymphoma. Blood Adv (2021) 5:3053–61. doi: 10.1182/bloodadvances.2021005094
Ghione P Gu JJ Attwood K Torka P Goel S Sundaram S et al. Impaired Humoral Responses to COVID-19 Vaccination in Patients With Lymphoma Receiving B-Cell-Directed Therapies. Blood (2021) 138:811–4. doi: 10.1182/blood.2021012443
Pimpinelli F Marchesi F Piaggio G Giannarelli D Papa E Falcucci P et al. Fifth-Week Immunogenicity and Safety of Anti-SARS-CoV-2 BNT162b2 Vaccine in Patients With Multiple Myeloma and Myeloproliferative Malignancies on Active Treatment: Preliminary Data From a Single Institution. J Hematol Oncol (2021) 14:81. doi: 10.1186/s13045-021-01090-6
Van Oekelen O Gleason CR Agte S Srivastava K Beach KF Aleman A et al. Highly Variable SARS-CoV-2 Spike Antibody Responses to Two Doses of COVID-19 RNA Vaccination in Patients With Multiple Myeloma. Cancer Cell (2021) 39:1028–30. doi: 10.1016/j.ccell.2021.06.014
Konishi Y Sklavenitis-Pistofidis R Yue H Ferrari F Redd RA Lightbody ED et al. Attenuated Response to SARS-CoV-2 Vaccine in Patients With Asymptomatic Precursor Stages of Multiple Myeloma and Waldenstrom Macroglobulinemia. Cancer Cell (2022) 40:6–8. doi: 10.1016/j.ccell.2021.12.003
Bosch M Khan FM Storek J. Immune Reconstitution After Hematopoietic Cell Transplantation. Curr Opin Hematol (2012) 19:324–35. doi: 10.1097/MOH.0b013e328353bc7d
Baron F Storer B Maris MB Storek J Piette F Metcalf M et al. Unrelated Donor Status and High Donor Age Independently Affect Immunologic Recovery After Nonmyeloablative Conditioning. Biol Blood Marrow Transplant (2006) 12:1176–87. doi: 10.1016/j.bbmt.2006.07.004
Castermans E Baron F Willems E Schaaf-Lafontaine N Meuris N Gothot A et al. Evidence for Neo-Generation of T Cells by the Thymus After non-Myeloablative Conditioning. Haematologica (2008) 93:240–7. doi: 10.3324/haematol.11708
van Den Brink M Leen AM Baird K Merchant M Mackall C Bollard CM. Enhancing Immune Reconstitution: From Bench to Bedside. Biol Blood Marrow Transplant (2013) 19:S79–83. doi: 10.1016/j.bbmt.2012.09.016
Peric Z Cahu X Malard F Brissot E Chevallier P Guillaume T et al. Peripheral Blood Plasmacytoid Dendritic Cells at Day 100 Can Predict Outcome After Allogeneic Stem Cell Transplantation. Biol Blood Marrow Transplant (2015) 21:1431–6. doi: 10.1016/j.bbmt.2015.04.003
Cordonnier C Einarsdottir S Cesaro S Di Blasi R Mikulska M Rieger C et al. Vaccination of Haemopoietic Stem Cell Transplant Recipients: Guidelines of the 2017 European Conference on Infections in Leukaemia (ECIL 7). Lancet Infect Dis (2019) 19:e200–12. doi: 10.1016/S1473-3099(18)30600-5
Janssen M Bruns A Kuball J Raijmakers R van Baarle D. Vaccine Responses in Adult Hematopoietic Stem Cell Transplant Recipients: A Comprehensive Review. Cancers (Basel) (2021) 13:6140. doi: 10.3390/cancers13236140
Redjoul R Le Bouter A Beckerich F Fourati S Maury S. Antibody Response After Second BNT162b2 Dose in Allogeneic HSCT Recipients. Lancet (2021) 398:298–9. doi: 10.1016/S0140-6736(21)01594-4
Piñana JL López-Corral L Martino R Montoro J Vazquez L Pérez A et al. SARS-CoV-2-Reactive Antibody Detection After SARS-CoV-2 Vaccination in Hematopoietic Stem Cell Transplant Recipients: Prospective Survey From the Spanish Hematopoietic Stem Cell Transplantation and Cell Therapy Group. Am J Hematol (2022) 97:30–42. doi: 10.1002/ajh.26385
Shem-Tov N Yerushalmi R Danylesko I Litachevsky V Levy I Olmer L et al. Immunogenicity and Safety of the BNT162b2 mRNA COVID-19 Vaccine in Haematopoietic Stem Cell Transplantation Recipients. Br J Haematol (2021) 196:884–91. doi: 10.1111/bjh.17918
Ebinger JE Fert-Bober J Printsev I Wu M Sun N Prostko JC et al. Antibody Responses to the BNT162b2 mRNA Vaccine in Individuals Previously Infected With SARS-CoV-2. Nat Med (2021) 27:981–4. doi: 10.1038/s41591-021-01325-6
Ram R Hagin D Kikozashvilli N Freund T Amit O Bar-On Y et al. Safety and Immunogenicity of the BNT162b2 mRNA COVID-19 Vaccine in Patients After Allogeneic HCT or CD19-Based CART Therapy-A Single-Center Prospective Cohort Study. Transplant Cell Ther (2021) 27:788–94. doi: 10.1016/j.jtct.2021.06.024
Jiménez M Roldan E Fernández-Naval C Villacampa G Martinez-Gallo M Medina-Gil D et al. Cellular and Humoral Immunogenicity of the mRNA-1273 SARS-CoV-2 Vaccine in Patients With Hematologic Malignancies. Blood Adv (2021) 6:774–84. doi: 10.1182/bloodadvances.2021006101
Canti L Humblet-Baron S Desombere I Neumann J Pannus P Heyndrickx L et al. Predictors of Neutralizing Antibody Response to BNT162b2 Vaccination in Allogeneic Hematopoietic Stem Cell Transplant Recipients. J Hematol Oncol (2021) 14:174. doi: 10.1186/s13045-021-01190-3
Boyarsky BJ Werbel WA Avery RK Tobian AAR Massie AB Segev DL et al. Antibody Response to 2-Dose SARS-CoV-2 mRNA Vaccine Series in Solid Organ Transplant Recipients. JAMA (2021) 325:2204–6. doi: 10.1001/jama.2021.7489
Stumpf J Siepmann T Lindner T Karger C Schwöbel J Anders L et al. Humoral and Cellular Immunity to SARS-CoV-2 Vaccination in Renal Transplant Versus Dialysis Patients: A Prospective, Multicenter Observational Study Using mRNA-1273 or BNT162b2 mRNA Vaccine. Lancet Reg Health Eur (2021):100178. doi: 10.1016/j.lanepe.2021.100178
Peled Y Ram E Lavee J Segev A Matezki S Wieder-Finesod A et al. Third Dose of the BNT162b2 Vaccine in Heart Transplant Recipients: Immunogenicity and Clinical Experience. J Heart Lung Transplant (2021) 41:148–57. doi: 10.1016/j.healun.2021.08.010
Ou MT Boyarsky BJ Chiang TPY Bae S Werbel WA Avery RK et al. Immunogenicity and Reactogenicity After SARS-CoV-2 mRNA Vaccination in Kidney Transplant Recipients Taking Belatacept. Transplantation (2021) 105:2119–23. doi: 10.1097/TP.0000000000003824
Kantauskaite M Müller L Kolb T Fischer S Hillebrandt J Ivens K et al. Intensity of Mycophenolate Mofetil Treatment Is Associated With an Impaired Immune Response to SARS-CoV-2 Vaccination in Kidney Transplant Recipients. Am J Transplant (2021) 22:634–9. doi: 10.1111/ajt.16851
Shostak Y Shafran N Heching M Rosengarten D Shtraichman O Shitenberg D et al. Early Humoral Response Among Lung Transplant Recipients Vaccinated With BNT162b2 Vaccine. Lancet Respir Med (2021) 9:e52–3. doi: 10.1016/S2213-2600(21)00184-3
Rabinowich L Grupper A Baruch R Ben-Yehoyada M Halperin T Turner D et al. Low Immunogenicity to SARS-CoV-2 Vaccination Among Liver Transplant Recipients. J Hepatol (2021) 75:435–8. doi: 10.1016/j.jhep.2021.04.020
Prendecki M Thomson T Clarke CL Martin P Gleeson S De Aguiar RC et al. Immunological Responses to SARS-CoV-2 Vaccines in Kidney Transplant Recipients. Lancet (2021) 398:1482–4. doi: 10.1016/S0140-6736(21)02096-1
Kemlin D Lemy A Pannus P Desombere I Gemander N Goossens ME et al. Hybrid Immunity to SARS-CoV-2 in Kidney Transplant Recipients and Hemodialysis Patients. Am J Transplant (2021). doi: 10.1111/ajt.16853
Lederer K Parvathaneni K Painter MM Bettini E Agarwal D Lundgreen KA et al. Germinal Center Responses to SARS-CoV-2 mRNA Vaccines in Healthy and Immunocompromised Individuals. medRxiv (2021). doi: 10.1101/2021.09.16.21263686
Caillard S Chavarot N Bertrand D Kamar N Thaunat O Moal V et al. Occurrence of Severe COVID-19 in Vaccinated Transplant Patients. Kidney Int (2021) 100:477–9. doi: 10.1016/j.kint.2021.05.011
Hagin D Freund T Navon M Halperin T Adir D Marom R et al. Immunogenicity of Pfizer-BioNTech COVID-19 Vaccine in Patients With Inborn Errors of Immunity. J Allergy Clin Immunol (2021) 148:739–49. doi: 10.1016/j.jaci.2021.05.029
Amodio D Ruggiero A Sgrulletti M Pighi C Cotugno N Medri C et al. Humoral and Cellular Response Following Vaccination With the BNT162b2 mRNA COVID-19 Vaccine in Patients Affected by Primary Immunodeficiencies. Front Immunol (2021) 12:727850. doi: 10.3389/fimmu.2021.727850
Delmonte OM Bergerson JRE Burbelo PD Durkee-Shock JR Dobbs K Bosticardo M et al. Antibody Responses to the SARS-CoV-2 Vaccine in Individuals With Various Inborn Errors of Immunity. J Allergy Clin Immunol (2021) 148:1192–7. doi: 10.1016/j.jaci.2021.08.016
Pham MN Murugesan K Banaei N Pinsky BA Tang M Hoyte E et al. Immunogenicity and Tolerability of COVID-19 mRNA Vaccines in PID Patients With Functional B-Cell Defects. J Allergy Clin Immunol (2021). doi: 10.1016/j.jaci.2021.11.022
Benotmane I Gautier G Perrin P Olagne J Cognard N Fafi-Kremer S et al. Antibody Response After a Third Dose of the mRNA-1273 SARS-CoV-2 Vaccine in Kidney Transplant Recipients With Minimal Serologic Response to 2 Doses. JAMA (2021) 326:1063–5. doi: 10.1001/jama.2021.12339
Masset C Kerleau C Garandeau C Ville S Cantarovich D Hourmant M et al. A Third Injection of the BNT162b2 mRNA COVID-19 Vaccine in Kidney Transplant Recipients Improves the Humoral Immune Response. Kidney Int (2021) 100:1132–5. doi: 10.1016/j.kint.2021.08.017
Ariën KK Heyndrickx L Michiels J Vereecken K Van Lent K Coppens S et al. Three Doses of the BNT162b2 Vaccine Confer Neutralising Antibody Capacity Against the SARS-CoV-2 B.1.1.529 (Omicron) Variant of Concern. medRxiv (2021) 2021.12.23.21268316. doi: 10.1101/2021.12.23.21268316
Gruell H Vanshylla K Tober-Lau P Hillus D Schommers P Lehmann C et al. mRNA Booster Immunization Elicits Potent Neutralizing Serum Activity Against the SARS-CoV-2 Omicron Variant. Nat Med (2022) 1–4. doi: 10.1038/s41591-021-01676-0
Muik A Lui BG Wallisch A-K Bacher M Mühl J Reinholz J et al. Neutralization of SARS-CoV-2 Omicron by BNT162b2 mRNA Vaccine-Elicited Human Sera. Science (2022) 375:678–80. doi: 10.1126/science.abn7591
Chavarot N Morel A Leruez-Ville M Vilain E Divard G Burger C et al. Weak Antibody Response to Three Doses of mRNA Vaccine in Kidney Transplant Recipients Treated With Belatacept. Am J Transplant (2021). doi: 10.1111/ajt.16814
Schrezenmeier E Rincon-Arevalo H Stefanski A-L Potekhin A Staub-Hohenbleicher H Choi M et al. B and T Cell Responses After a Third Dose of SARS-CoV-2 Vaccine in Kidney Transplant Recipients. J Am Soc Nephrol (2021) 32:3027–33. doi: 10.1681/ASN.2021070966
Hall VG Ferreira VH Ku T Ierullo M Majchrzak-Kita B Chaparro C et al. Randomized Trial of a Third Dose of mRNA-1273 Vaccine in Transplant Recipients. N Engl J Med (2021) 385:1244–6. doi: 10.1056/NEJMc2111462
Karaba AH Zhu X Liang T Wang KH Rittenhouse AG Akinde O et al. A Third Dose of SARS-CoV-2 Vaccine Increases Neutralizing Antibodies Against Variants of Concern in Solid Organ Transplant Recipients. Am J Transplant (2021) 8:e681–3. doi: 10.1111/ajt.16933
Jurdi AA Gassen RB Borges TJ Lape IT Morena L Efe O et al. Diminished Antibody Response Against SARS-CoV-2 Omicron Variant After Third Dose of mRNA Vaccine in Kidney Transplant Recipients. medRxiv (2022) 2022.01.03.22268649. doi: 10.1101/2022.01.03.22268649
Redjoul R Le Bouter A Parinet V Fourati S Maury S. Antibody Response After Third BNT162b2 Dose in Recipients of Allogeneic HSCT. Lancet Haematol (2021). doi: 10.1016/S2352-3026(21)00274-X
Maillard A Redjoul R Klemencie M Labussiere-Wallet H Le Bourgeois A D’Aveni M et al. Antibody Response After 2 and 3 Doses of SARS-CoV-2 mRNA Vaccine in Allogeneic Hematopoietic Cell Transplant Recipients. Blood (2021) 139:134–7. doi: 10.1182/blood.2021014232
Herishanu Y Rahav G Levi S Braester A Itchaki G Bairey O et al. Efficacy of a Third BNT162b2 mRNA COVID-19 Vaccine Dose in Patients With CLL Who Failed Standard Two-Dose Vaccination. Blood (2021) 139:678–85. doi: 10.1182/blood.2021014085
Terpos E Gavriatopoulou M Ntanasis-Stathopoulos I Briasoulis A Gumeni S Malandrakis P et al. Booster BNT162b2 Optimizes SARS-CoV-2 Humoral Response in Myeloma Patients; the Negative Effect of Anti-BCMA Therapy. Blood (2022). doi: 10.1182/blood.2021014989
Curtis JR Johnson SR Anthony DD Arasaratnam RJ Baden LR Bass AR et al. American College of Rheumatology Guidance for COVID-19 Vaccination in Patients With Rheumatic and Musculoskeletal Diseases: Version 3. Arthritis Rheumatol (2021) 73:e60–75. doi: 10.1002/art.41928
Picchianti-Diamanti A Aiello A Laganà B Agrati C Castilletti C Meschi S et al. ImmunosuppressiveTherapies Differently Modulate Humoral- and T-Cell-Specific Responses to COVID-19 mRNA Vaccine in Rheumatoid Arthritis Patients. Front Immunol (2021) 12:740249. doi: 10.3389/fimmu.2021.740249
Kamar N Abravanel F Marion O Romieu-Mourez R Couat C Del Bello A et al. Assessment of 4 Doses of SARS-CoV-2 Messenger RNA-Based Vaccine in Recipients of a Solid Organ Transplant. JAMA Netw Open (2021) 4:e2136030. doi: 10.1001/jamanetworkopen.2021.36030
Schrezenmeier E Rincon-Arevalo H Jens A Stefanski A-L Hammett C Osmanodja B et al. Temporary Hold of Mycophenolate Boosts SARS-CoV-2 Vaccination-Specific Humoral and Cellular Immunity in Kidney Transplant Recipients. medRxiv (2022) 2022.01.05.21268478. doi: 10.1101/2022.01.05.21268478
VanBlargan LA Errico JM Halfmann PJ Zost SJ Crowe JEJ Purcell LA et al. An Infectious SARS-CoV-2 B.1.1.529 Omicron Virus Escapes Neutralization by Therapeutic Monoclonal Antibodies. Nat Med (2022) 1–6. doi: 10.1038/s41591-021-01678-y
Pimpinelli F Marchesi F Piaggio G Giannarelli D Papa E Falcucci P et al. Lower Response to BNT162b2 Vaccine in Patients With Myelofibrosis Compared to Polycythemia Vera and Essential Thrombocythemia. J Hematol Oncol (2021) 14:119. doi: 10.1186/s13045-021-01130-1
Bergman P Blennow O Hansson L Mielke S Nowak P Chen P et al. Safety and Efficacy of the mRNA BNT162b2 Vaccine Against SARS-CoV-2 in Five Groups of Immunocompromised Patients and Healthy Controls in a Prospective Open-Label Clinical Trial. EBioMedicine (2021) 74:103705. doi: 10.1016/j.ebiom.2021.103705
Canti L Ariën KK Desombere I Humblet-Baron S Pannus P Heyndrickx L et al. Antibody Response against SARS-CoV-2 Delta and Omicron Variants After Third-Dose BNT162b2 Vaccination in Allo-HCT Recipients. Cancer Cell (2022). doi: 10.1016/j.ccell.2022.02.005
Azzi Y Raees H Wang T Cleare L Liriano-Ward L Loarte-Campos P et al. Risk Factors Associated With Poor Response to COVID-19 Vaccination in Kidney Transplant Recipients. Kidney Int (2021). doi: 10.1016/j.kint.2021.08.019