Doctoral thesis (Dissertations and theses)
Machine learning for reduced-order-models and surrogate models of elastoplasticity
Vijayaraghavan, Soumianarayanan
2023
 

Files


Full Text
Soumianarayanan_Liege_Thesis_revised.pdf
Author preprint (11.15 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Machine learning; Model-order-reduction; Elastoplastic models; Neural networks
Abstract :
[en] Projection-based model-order-reduction (MOR) accelerates computations of physical systems in case the same computation must be performed many times for different load parameters (e.g.~parameters, geometries, initial conditions, boundary conditions). It therefore finds its use in application domains such as inverse modelling, optimization, uncertainty quantification and computational homogenization. Projection-based MOR uses the solutions of an initial set of (training/offline) computations to construct the solutions of the remaining (online) computations. For finite element computations of hyperelastic solids, projection-based MOR is accurate and fast. However, for finite element computations of hyperelastoplastic solids, conventional projection-based MOR is far from accurate and fast. This thesis explores different numerical approaches to improve projection-based MOR for hyperelastoplastic finite element simulations. The first investigated innovation focuses on enhancing the interpolation employed in projection-based MOR with an additional interpolation associated with a coarse finite element discretization. Because inconsistent results are obtained with this approach, the second innovation focuses on equipping the projection-based MOR with a neural network. This substantially accelerates the online computations, and although the reported accuracy can be argued to be reasonable, it is definitely not excellent. To this end, the third innovation investigates the use of machine learning to adaptively select the interpolation functions of projection-based MOR during the course of a simulation.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Vijayaraghavan, Soumianarayanan ;  Université de Liège - ULiège > Aérospatiale et Mécanique (A&M)
Language :
English
Title :
Machine learning for reduced-order-models and surrogate models of elastoplasticity
Defense date :
2023
Institution :
ULiège - Université de Liège
Degree :
DOCTEUR DE L’UNIVERSITE DE LIEGE EN SCIENCES DE L’INGENIEUR
Cotutelle degree :
DOCTEUR DE L’UNIVERSITE DU LUXEMBOURG EN SCIENCES DE L’INGENIEUR
Promotor :
Noels, Ludovic  ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Bordas, Stephane;  Unilu - University of Luxembourg > Faculty of Science, Technology and Medicine > Professor
President :
Zilian, Andreas;  Unilu - University of Luxembourg > Faculty of Science, Technology and Medicine > Professor
Secretary :
Wu, Ling ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Jury member :
Ryckelynck, David;  MINES Paristech > Centre des Matériaux > Professor
Duriez, Christian;  INRIA – Lille > DEFROST team > Professor
Available on ORBi :
since 23 March 2022

Statistics


Number of views
222 (45 by ULiège)
Number of downloads
21 (17 by ULiège)

Bibliography


Similar publications



Contact ORBi