[en] Climatic niche evolution during the diversification of tropical plants has received little attention in Africa. To address this, we characterised the climatic niche of >4000 tropical African woody species, distinguishing two broad bioclimatic groups (forest vs. savanna) and six subgroups. We quantified niche conservatism versus lability at the genus level and for higher clades, using a molecular phylogeny of >800 genera. Although niche stasis at speciation is prevalent, numerous clades individually cover vast climatic spaces suggesting a general ease in transcending ecological limits, especially across bioclimatic subgroups. The forest biome was the main source of diversity, providing many lineages to savanna, but reverse shifts also occurred. We identified clades that diversified in savanna after shifts from forest. The forest-savanna transition was not consistently associated with a growth form change, though we found evolutionarily labile clades whose presence in forest or savanna is associated respectively with climbing or shrubby species diversification.
Dexter, Kyle G.; Tropical School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom ; Tropical Diversity Section, Royal Botanic Garden Edinburgh, Edinburgh, United Kingdom
Segovia, Ricardo A.; Instituto de Ecologia y Biodiversidad (IEB), Santiago, Chile ; Facultad de Ciencias, Instituto de Ciencias Ambientales y Evolutivas, Kat, Valdivia, Chile
Steppe, Kathy; Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
Fayolle, Adeline ; Université de Liège - ULiège > TERRA Research Centre > Gestion des ressources forestières et des milieux naturels
Language :
English
Title :
Climatic niche lability but growth form conservatism in the African woody flora
This research was supported by the Special Research Fund Ghent University—BOF postdoctoral fellowship BOF20/PDO/003, the University of Liège and the EOS‐CANOPI project (O.0026.22 grant). We thank Pr. Michael D. Swaine (United Kingdom) and Pr. Jean‐Louis Doucet (Belgium) for their botanical expertise and their help in the conception of this study. R.A.S. was supported by Grant ANID ACE210006.
Antonelli, A., Zizka, A., Carvalho, F.A., Scharn, R., Bacon, C.D., Silvestro, D. et al. (2018) Amazonia is the primary source of Neotropical biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 115, 6034–6039.
Bilton, M.C., Metz, J. & Tielbörger, K. (2016) Climatic niche groups: a novel application of a common assumption predicting plant community response to climate change. Perspectives in Plant Ecology, Evolution and Systematics, 19, 61–69.
Boyko, J.D. & Beaulieu, J.M. (2021) Generalized hidden Markov models for phylogenetic comparative datasets. Methods in Ecology and Evolution, 12, 468–478.
Broennimann, O., Fitzpatrick, M.C., Pearman, P.B., Petitpierre, B., Pellissier, L., Yoccoz, N.G. et al. (2012) Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21, 481–497.
Burgess, N.D., Clarke, G.P. & Rodgers, W.A. (1998) Coastal forests of eastern Africa: status, endemism patterns and their potential causes. Biological Journal of the Linnean Society, 64, 337–367.
Charles-Dominique, T., Staver, A.C., Midgley, G.F. & Bond, W.J. (2015) Functional differentiation of biomes in an African savanna/forest mosaic. South African Journal of Botany, 101, 82–90.
Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M.S., Delitti, W.B.C., et al. (2014) Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20, 3177–3190.
Chery, J.G., Pace, M.R., Acevedo-Rodríguez, P., Specht, C.D. & Rothfels, C.J. (2020) Modifications during early plant development promote the evolution of nature’s most complex woods. Current Biology, 30, 237–244.e2.
Conradi, T., Slingsby, J.A., Midgley, G.F., Nottebrock, H., Schweiger, A.H. & Higgins, S.I. (2020) An operational definition of the biome for global change research. New Phytologist, 227, 1294–1306.
Couvreur, T.L., Forest, F. & Baker, W.J. (2011) Origin and global diversification patterns of tropical rain forests: inferences from a complete genus-level phylogeny of palms. BMC Biology, 9, 44.
Crisp, M.D., Arroyo, M.T.K., Cook, L.G., Gandolfo, M.A., Jordan, G.J., McGlone, M.S. et al. (2009) Phylogenetic biome conservatism on a global scale. Nature, 458, 754–756.
Dauby, G., Zaiss, R., Blach-Overgaard, A., Catarino, L., Damen, T., Deblauwe, V. et al. (2016) RAINBIO: a mega-database of tropical African vascular plants distributions. PhytoKeys, 74, 1–18.
Di Cola, V., Broennimann, O., Petitpierre, B., Breiner, F.T., D'Amen, M., Randin, C. et al. (2017) ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography, 40, 774–787.
Donoghue, M.J. & Edwards, E.J. (2014) Biome shifts and niche evolution in plants. Annual Review of Ecology Evolution and Systematics, 45, 547–572.
Doyle, J.A. (2012) Molecular and fossil evidence on the origin of angiosperms. Annual Review of Earth and Planetary Sciences, 40, 301–326.
Eiserhardt, W.L., Couvreur, T.L.P. & Baker, W.J. (2017) Plant phylogeny as a window on the evolution of hyperdiversity in the tropical rainforest biome. New Phytologist, 214, 1408–1422.
Fayolle, A., Swaine, M.D., Aleman, J., Azihou, A.F., Bauman, D., te Beest, M. et al. (2019) A sharp floristic discontinuity revealed by the biogeographic regionalization of African savannas. Journal of Biogeography, 46(2), 454–465.
Fayolle, A., Swaine, M.D., Bastin, J.-F., Bourland, N., Comiskey, J.A., Dauby, G. et al. (2014) Patterns of tree species composition across tropical African forests. Journal of Biogeography, 41(12), 2320–2331.
Gagnon, E., Ringelberg, J.J., Bruneau, A., Lewis, G.P. & Hughes, C.E. (2019) Global Succulent Biome phylogenetic conservatism across the pantropical Caesalpinia Group (Leguminosae). New Phytologist, 222, 1994–2008.
Gorel, A.-P., Steppe, K., Beeckman, H., De Baerdemaeker, N.J.F., Doucet, J.-L., Ligot, G. et al. (2019) Testing the divergent adaptation of two congeneric tree species on a rainfall gradient using eco-physio-morphological traits. Biotropica, 51(3), 364–377.
Hardy, O.J., Couteron, P., Munoz, F., Ramesh, B.R. & Pélissier, R. (2012) Phylogenetic turnover in tropical tree communities: impact of environmental filtering, biogeography and mesoclimatic niche conservatism. Global Ecology and Biogeography, 21, 1007–1016.
Harvey, P.H. & Pagel, M.D. (1991) The comparative method in evolutionary biology. Oxford: Oxford University Press.
Hearn, D.J. (2006) Adenia (Passifloraceae) and its adaptive radiation: phylogeny and growth form diversification. Systematic Botany, 31, 805–821.
Hooft van Huysduynen, A., Janssens, S., Merckx, V., Vos, R., Valente, L., Zizka, A. et al. (2021) Temporal and palaeoclimatic context of the evolution of insular woodiness in the Canary Islands. Ecology and Evolution, 11, 12220–12231.
Kissling, W.D., Eiserhardt, W.L., Baker, W.J., Borchsenius, F., Couvreur, T.L.P., Balslev, H. et al. (2012) Cenozoic imprints on the phylogenetic structure of palm species assemblages worldwide. Proceedings of the National Academy of Sciences of the United States of America, 109, 7379–7384.
Kyalangalilwa, B., Boatwright, J.S., Daru, B.H., Maurin, O. & van der Bank, M. (2013) Phylogenetic position and revised classification of Acacia s.l. (Fabaceae: Mimosoideae) in Africa, including new combinations in Vachellia and Senegalia. Botanical Journal of the Linnean Society, 172, 500–523.
Linder, H.P., de Klerk, H.M., Born, J., Burgess, N.D., Fjeldså, J. & Rahbek, C. (2012) The partitioning of Africa: statistically defined biogeographical regions in sub-Saharan Africa. Journal of Biogeography, 39, 1189–1205.
McDowell, N.G. & Allen, C.D. (2015) Darcy’s law predicts widespread forest mortality under climate warming. Nature Climate Change, 5, 669–672.
Moncrieff, G.R., Bond, W.J. & Higgins, S.I. (2016) Revising the biome concept for understanding and predicting global change impacts. Journal of Biogeography, 43, 863–873.
Nakagawa, S., Johnson, P.C.D. & Schielzeth, H. (2017) The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. Journal of the Royal Society, Interface, 14, 20170213.
Noce, S., Caporaso, L. & Santini, M. (2020) A new global dataset of bioclimatic indicators. Scientific Data, 7, 398.
Nürk, N.M., Linder, H.P., Onstein, R.E., Larcombe, M.J., Hughes, C.E., Piñeiro Fernández, L. et al. (2020) Diversification in evolutionary arenas—Assessment and synthesis. Ecology and Evolution, 10, 6163–6182.
Oksanen, J., Kindt, R., Legendre, P., O’Hara, B., Stevens, M.H.H., Oksanen, M.J. et al. (2007) The vegan package. Community Ecology Package, 10, 719.
Oliveira, R.S., Costa, F.R.C., Baalen, E., Jonge, A., Bittencourt, P.R., Almanza, Y. et al. (2019) Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro-topographic gradients. New Phytologist, 221, 1457–1465.
Panero, J.L. & Crozier, B.S. (2016) Macroevolutionary dynamics in the early diversification of Asteraceae. Molecular Phylogenetics and Evolution, 99, 116–132.
Preston, J.C. & Sandve, S.R. (2013) Adaptation to seasonality and the winter freeze. Frontiers in Plant Science, 4, 167.
R Core Team. (2019) R: A language and environment for statistical computing. Vienna, Austria.: R Foundation for Statistical Computing. https://www.R-project.org/
Ringelberg, J.J., Zimmermann, N.E., Weeks, A., Lavin, M. & Hughes, C.E. (2020) Biomes as evolutionary arenas: Convergence and conservatism in the trans-continental succulent biome. Global Ecology and Biogeography, 29, 1100–1113.
Rowe, N. & Speck, T. (2005) Plant growth forms: an ecological and evolutionary perspective. New Phytologist, 166, 61–72.
Sage, R.F. (2004) The evolution of C4 photosynthesis. New Phytologist, 161, 341–370.
Sanchez-Martinez, P., Martínez-Vilalta, J., Dexter, K.G., Segovia, R.A. & Mencuccini, M. (2020) Adaptation and coordinated evolution of plant hydraulic traits. Ecology Letters, 23, 1599–1610.
Schnitzer, S.A. & Bongers, F. (2002) The ecology of lianas and their role in forests. Trends in Ecology & Evolution, 17, 223–230.
Segovia, R.A., Pennington, R.T., Baker, T.R., de Souza, F.C., Neves, D.M., Davis, C.C. et al. (2020) Freezing and water availability structure the evolutionary diversity of trees across the Americas. Science Advances, 6, eaaz5373.
Shipley, B., De Bello, F., Cornelissen, J.H.C., Laliberté, E., Laughlin, D.C. & Reich, P.B. (2016) Reinforcing loose foundation stones in trait-based plant ecology. Oecologia, 180, 923–931.
Simon, M.F. & Pennington, T. (2012) Evidence for adaptation to fire regimes in the tropical savannas of the Brazilian Cerrado. International Journal of Plant Sciences, 173, 711–723.
Staver, A.C., Archibald, S. & Levin, S.A. (2011) The global extent and determinants of savanna and forest as alternative biome states. Science, 334, 230–232.
Stoffel, M.A., Nakagawa, S. & Schielzeth, H. (2017) rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods in Ecology and Evolution, 8, 1639–1644.
Swaine, M.D. (1992) Characteristics of dry forest in West Africa and the influence of fire. Journal of Vegetation Science, 3, 365–374.
Thioulouse, J., Dray, S., Dufour, A.-B., Siberchicot, A., Jombart, T. & Pavoine, S. (2018) Multivariate analysis of ecological data with ade4. New York, NY: Springer.
Warren, D.L., Glor, R.E. & Turelli, M. (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution, 62, 2868–2883.
White, F. (1978) The taxonomy, ecology and chorology of African Ebenaceae I. The Guineo-Congolian species. Bulletin Du Jardin Botanique National De Belgique/Bulletin Van De National Plantentuin Van België, 48, 245–358.
Zanne, A.E., Tank, D.C., Cornwell, W.K., Eastman, J.M., Smith, S.A., FitzJohn, R.G. et al. (2014) Three keys to the radiation of angiosperms into freezing environments. Nature, 506, 89–92.