J. Leidenfrost, De Aquae Communis Nonnullis Qualitatibus Tractatus (Ovenius, Duisburg, 1756).
P. Boutigny, Dictionnaire des arts et manufactures: Description des prócédés de l'industrie française et étrangère (Librairie Scientifique et Industrielle de L. Mathias, Paris, 1847).
A. L. Biance, C. Clanet, and D. Quéré, Leidenfrost dynamics, Phys. Fluids 15, 1632 (2003) 1070-6631 10.1063/1.1572161.
H.-m. Kwon, J. Bird, and K. K. Varanasi, Increasing Leidenfrost point using micro-nano hierarchical surface structures, Appl. Phys. Lett. 103, 201601 (2013) 0003-6951 10.1063/1.4828673.
H. Kim, B. Truong, J. Buongiorno, and L. Hu, On the effect of surface roughness height, wettability, and nanoporosity on Leidenfrost phenomena, Appl. Phys. Lett. 98, 083121 (2011) 0003-6951 10.1063/1.3560060.
L. Maquet, B. Sobac, B. Darbois-Texier, A. Duchesne, M. Brandenbourger, A. Rednikov, P. Colinet, and S. Dorbolo, Leidenfrost drops on a heated liquid pool, Phys. Rev. Fluids 1, 053902 (2016) 2469-990X 10.1103/PhysRevFluids.1.053902.
B. Sobac, L. Maquet, A. Duchesne, H. Machrafi, A. Rednikov, P. Dauby, P. Colinet, and S. Dorbolo, Self-induced flows enhance the levitation of Leidenfrost drops on liquid baths, Phys. Rev. Fluids 5, 062701 (R) (2020) 2469-990X 10.1103/PhysRevFluids.5.062701.
E. Guyon, J.-Y. Delenne, and F. Radjai, Built on Sand The Science of Granular Materials (MIT Press, 2020).
D. Liu, T.-B. Nguyen, N.-V. Nguyen, and T. Tran, Sailing Droplets in Superheated Granular Layer, Phys. Rev. Lett. 125, 168002 (2020) 0031-9007 10.1103/PhysRevLett.125.168002.
G. McHale, M. Newton, and N. Shirtcliffe, Water-repellent soil and its relationship to granularity, surface roughness and hydrophobicity: A materials science view, Eur. J. Soil Sci. 56, 445 (2005) 1351-0754 10.1111/j.1365-2389.2004.00683.x.
D. Polamuri and S. Thamida, Experimental determination of effective thermal conductivity of granular material by using a cylindrical heat exchanger, Int. J. Heat Mass Transf. 81, 767 (2015) 0017-9310 10.1016/j.ijheatmasstransfer.2014.10.070.
E. Huetter, N. Koemle, G. Kargl, and E. Kaufmann, Determination of the effective thermal conductivity of granular materials under varying pressure conditions, J. Geophys. Res. 113, E12004 (2008) 0148-0227 10.1029/2008JE003085.
G. Delon, D. Terwagne, S. Dorbolo, N. Vandewalle, and H. Caps, Impact of liquid droplets on granular media, Phys. Rev. E 84, 046320 (2011) 1539-3755 10.1103/PhysRevE.84.046320.
S. Zhao, R. de Jong, and D. van der Meer, Raindrop impact on sand: A dynamic explanation of crater morphologies, Soft Matter 11, 6562 (2015) 1744-683X 10.1039/C5SM00957J.
S.-C. Zhao, R. de Jong, and D. van der Meer, Liquid-Grain Mixing Suppresses Droplet Spreading and Splashing During Impact, Phys. Rev. Lett. 118, 054502 (2017) 0031-9007 10.1103/PhysRevLett.118.054502.
L. Maquet, P. Colinet, and S. Dorbolo, Organization of microbeads in Leidenfrost drops, Soft Matter 10, 4061 (2014) 1744-683X 10.1039/c4sm00169a.
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevFluids.7.034301 for additional descriptions of the properties of the grains, the thermal analysis, and further analysis of the digging speed and the vapor production.
Y.-W. Kim, K.-Y. Lim. and W.-S. Seo, Microstructure and thermal conductivity of silicon carbide with yttria and scandia, J. Am. Ceram. Soc. 97, 923 (2013) 10.1111/jace.12737.
D. A. Huerta, V. Sosa, M. C. Vargas, and J. C. Ruiz-Suárez, Archimedes' principle in fluidized granular systems, Phys. Rev. E 72, 031307 (2005) 1539-3755 10.1103/PhysRevE.72.031307.
S. Dey and S. Zeeshan Ali, Advances in modeling of bed particle entrainment sheared by turbulent flow, Phys. Fluids 30, 061301 (2018) 1070-6631 10.1063/1.5030458.