U-NET; convolutional neural network; diffuse large B-cell lymphoma; muscle depletion; muscle hypodensity; sarcopenia; UNET; Oncology; Cancer Research
Abstract :
[en] BACKGROUND: Muscle depletion (MD) assessed by computed tomography (CT) has been shown to be a predictive marker in solid tumors, but has not been assessed in non-Hodgkin's lymphomas. Despite software improvements, MD measurement remains highly time-consuming and cannot be used in clinical practice.
METHODS: This study reports the development of a Deep-Learning automatic segmentation algorithm (DLASA) to measure MD, and investigate its predictive value in a cohort of 656 diffuse large B cell lymphoma (DLBCL) patients included in the GAINED phase III prospective trial (NCT01659099).
RESULTS: After training on a series of 190 patients, the DLASA achieved a Dice coefficient of 0.97 ± 0.03. In the cohort, the median skeletal muscle index was 50.2 cm2/m2 and median muscle attenuation (MA) was 36.1 Hounsfield units (HU). No impact of sarcopenia was found on either progression free survival (PFS) or overall survival (OS). Muscular hypodensity, defined as MA below the tenth percentile according to sex, was associated with a lower OS and PFS, respectively (HR = 2.80 (95% CI 1.58-4.95), p < 0.001, and HR = 2.22 (95% CI 1.43-3.45), p < 0.001). Muscular hypodensity appears to be an independent risk factor for mortality in DLBCL and because of DLASA can be estimated in routine practice.
Disciplines :
Hematology
Author, co-author :
Jullien, Maxime ; Department of Hematology, Nantes University Hospital, INSERM CRCINA Nantes-Angers, NeXT Université de Nantes, 44000 Nantes, France
Tessoulin, Benoit; Department of Hematology, Nantes University Hospital, INSERM CRCINA Nantes-Angers, NeXT Université de Nantes, 44000 Nantes, France
Ghesquières, Hervé; Department of Hematology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Claude Bernard Lyon-1 University, 69310 Pierre Bénite, France
Oberic, Lucie; Department of Hematology, IUC Toulouse Oncopole, 31000 Toulouse, France
Morschhauser, Franck; Department of Hematology, Univ. Lille, CHU Lille, EA 7365-GRITA-Groupe de Recherche sur les Formes Injectables et les Technologies Associées, 59000 Lille, France
Tilly, Hervé; Department of Hematology, Centre H. Becquerel, 76000 Rouen, France
Ribrag, Vincent; Department of Hematology, Gustave Roussy, Université Paris-Saclay, 94800 Villejuif, France
Lamy, Thierry; Department of Hematology, University Hospital of Rennes, 35000 Rennes, France
Thieblemont, Catherine; Department of Hematology, APHP, Hopital Saint Louis, Université Paris Diderot, 75011 Paris, France
Villemagne, Bruno; Department of Hematology, Hopital Departemental de Vendée, 85000 La Roche sur Yon, France
Gressin, Rémy; Department of Hematology, CHU Grenoble, 38000 Grenoble, France
Bouabdallah, Kamal; Department of Hematology, University Hospital of Bordeaux, F-33000 Bordeaux, France
Haioun, Corinne; Lymphoïd Malignancies Unit, Hôpital Henri Mondor, AP-HP, 94000 Créteil, France
Damaj, Gandhi; Department of Hematology, Institut D'hématologie de Basse Normandie, 14000 Caen, France
Fornecker, Luc-Matthieu; Department of Hematology, Institut de Cancérologie Strasbourg Europe (ICANS), University Hospital of Strasbourg, 67000 Strasbourg, France
Schiano De Colella, Jean-Marc; Department of Hematology, Institut P. Calmette, 13000 Marseille, France
Feugier, Pierre; Department of Hematology, University Hospital of Nancy, 54000 Nancy, France
Hermine, Olivier; Department of Hematology, Hopital Necker, F-75015 Paris, France
Cartron, Guillaume; Department of Clinical Hematology, University Hospital of Montpellier, UMR-CNRS 5535, 34000 Montpellier, France
BONNET, Christophe ; Centre Hospitalier Universitaire de Liège - CHU > > Service d'hématologie clinique
André, Marc; Department of Hematology, CHU UCL Namur, Université Catholique de Louvain, 5000 Namur, Belgium
Bailly, Clément ; Department of Nuclear Medicine, University Hospital of Nantes, 44000 Nantes, France
Casasnovas, René-Olivier; Department of Hematology, University Hospital F. Mitterrand and Inserm UMR 1231, 21000 Dijon, France
Le Gouill, Steven; Department of Hematology, Nantes University Hospital, INSERM CRCINA Nantes-Angers, NeXT Université de Nantes, 44000 Nantes, France
Conflicts of Interest: HG reports grants, personal fees or non-financial support from Gilead Sciences, Janssen, Celgene, Roche, Takeda; LO, Advisory board: Roche, Takeda; honoraria: Celgene, Janssen, Roche; FM has received honoraria from Bristol-Myers Squibb and Janssen and served as a consultant or advisor to Celgene, Bayer, Abbvie, Verasteem, Gilead, Servier, Roche/Genentech, and Epizyme; HT, Consulting and advisory board: Roche, Janssen-Cilag, Karyopharm, Astra-Zeneca, Lectures: Roche, Bristol-Myers-Squibb, Servier; VR Infinity Pharmaceuticals, Bristol-Myers Squibb, PharmaMar, Gilead Sciences, AZD, Epizyme, Incyte, MSD, Servier, Roche, arGEN-X BVBA; CT Honoraria: Amgen, Celgene, Jazz Pharma, Kyte/Gilead, Novartis, Servier, Roche, Janssen; Research funding: Roche, Celgene, Aspira; CH Honoraria: Roche, Janssen-Cilag, Gilead, Takeda, Miltenyi and Servier; Travel grants: Amgen and Celgene; GD Board: Roche, takeda; Travel: Roche AbbVie Pfizer, Grants: takeda, roche; LF Honoraria: Roche, AstraZeneca, Servier, Takeda, Abbvie, Janssen; Advisory boards: Takeda, Roche, Gilead, AbbVie, Janssen-Cilag; Travel grants: La Roche, Gilead, Abbvie and Janssen-Cilag; PF Roche Genentech, celgene, Abbvie, Janssen and gilead; OH, Celgene research grant, Alexion research grant, Ab science co-founder research grant consulting, Inatherys co-founder research grants; GC has received honoraria from Janssen, Sanofi, Abbvie, Gilead, Roche, Celgene, Novartis, Takeda and served as a consultant or Celgene, Roche/Genentech; CB is board member for Roche; MA: Advisory Board: Takeda, Bristol-Myers-Squibb, Karyopharm, Gilead, Incyte, Research Grants: Roche, Johnson & Johnson, Takeda, Travel Grants: Roche, Bristol-Myers-Squib, Celgene, Gilead, Abbvie; ROC reports grants, personal fees and non-financial support from Roche Genentech, during the conduct of the study; reports personal fees from MSD, BMS, Abbvie, Amgen, Celgene, reports grants and personal fees from Takeda, GILEAD/kite, outside the submitted work; SLG reports grants, personal fees or non-financial support from Roche Genentech, during the conduct of the study; reports personal fees from Celgene, reports grants and personal fees from Janssen-Cilag; GILEAD/kite, Servier outside the submitted work. All other authors declare no competing interests (M.J., B.T., T.L., B.V., R.G., K.B., J.-M.S.D.C.).Funding: The GAINED trial was funded by Roche SAS.
Tisdale, M.J. Cachexia in cancer patients. Nat. Rev. Cancer 2002, 2, 862–871. [CrossRef] [PubMed]
Dewys, W.D.; Begg, C.; Lavin, P.T.; Band, P.R.; Bennett, J.M.; Bertino, J.R.; Cohen, M.H.; Douglass, H.O.; Engstrom, P.F.; Ezdinli, E.Z.; et al. Prognostic effect of weight loss prior to chemotherapy in cancer patients. Eastern Cooperative Oncology Group. Am. J. Med. 1980, 69, 491–497. [CrossRef]
Fearon, K.; Strasser, F.; Anker, S.D.; Bosaeus, I.; Bruera, E.; Fainsinger, R.L.; Jatoi, A.; Loprinzi, C.; MacDonald, N.; Mantovani, G.; et al. Definition and classification of cancer cachexia: An international consensus. Lancet Oncol. 2011, 12, 489–495. [CrossRef]
Prado, C.M.M.; Birdsell, L.A.; Baracos, V.E. The emerging role of computerized tomography in assessing cancer cachexia. Curr. Opin. Support. Palliat. Care 2009, 3, 269–275. [CrossRef] [PubMed]
Mourtzakis, M.; Prado, C.M.M.; Lieffers, J.R.; Reiman, T.; McCargar, L.J.; Baracos, V.E. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl. Physiol. Nutr. Metab. 2008, 33, 997–1006. [CrossRef] [PubMed]
Aubrey, J.; Esfandiari, N.; Baracos, V.E.; Buteau, F.A.; Frenette, J.; Putman, C.T.; Mazurak, V.C. Measurement of skeletal muscle radiation attenuation and basis of its biological variation. Acta Physiol. Oxf. Engl. 2014, 210, 489–497. [CrossRef]
van Vugt, J.L.A.; Levolger, S.; Gharbharan, A.; Koek, M.; Niessen, W.J.; Burger, J.W.A.; Willemsen, S.P.; de Bruin, R.W.F.; IJzermans, J.N.M. A comparative study of software programmes for cross-sectional skeletal muscle and adipose tissue measurements on abdominal computed tomography scans of rectal cancer patients. J. Cachexia Sarcopenia Muscle 2017, 8, 285–297. [CrossRef] [PubMed]
LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. Lect. Notes Comput. Sci. 2015, 9351, 234–241.
Guo, Z.; Guo, N.; Gong, K.; Zhong, S.; Li, Q. Gross tumor volume segmentation for head and neck cancer radiotherapy using deep dense multi-modality network. Phys. Med. Biol. 2019, 64, 205015. [CrossRef]
Li, J.; Sarma, K.V.; Ho, K.C.; Gertych, A.; Knudsen, B.S.; Arnold, C.W. A Multi-scale U-Net for Semantic Segmentation of Histological Images from Radical Prostatectomies. AMIA Annu. Symp. Proc. 2017, 2017, 1140–1148.
Norman, B.; Pedoia, V.; Majumdar, S. Use of 2D U-Net Convolutional Neural Networks for Automated Cartilage and Meniscus Segmentation of Knee MR Imaging Data to Determine Relaxometry and Morphometry. Radiology 2018, 288, 177–185. [CrossRef] [PubMed]
Blanc-Durand, P.; Jégou, S.; Kanoun, S.; Berriolo-Riedinger, A.; Bodet-Milin, C.; Kraeber-Bodéré, F.; Carlier, T.; Le Gouill, S.; Casasnovas, R.-O.; Meignan, M.; et al. Fully automatic segmentation of diffuse large B cell lymphoma lesions on 3D FDG-PET/CT for total metabolic tumour volume prediction using a convolutional neural network. Eur. J. Nucl. Med. Mol. Imaging 2020, 48, 1362–1370. [CrossRef] [PubMed]
Burns, J.E.; Yao, J.; Chalhoub, D.; Chen, J.J.; Summers, R.M. A Machine Learning Algorithm to Estimate Sarcopenia on Abdominal CT. Acad. Radiol. 2020, 27, 311–320. [CrossRef] [PubMed]
Dabiri, S.; Popuri, K.; Cespedes Feliciano, E.M.; Caan, B.J.; Baracos, V.E.; Beg, M.F. Muscle segmentation in axial computed tomography (CT) images at the lumbar (L3) and thoracic (T4) levels for body composition analysis. Comput. Med. Imaging Graph. 2019, 75, 47–55. [CrossRef]
Edwards, K.; Chhabra, A.; Dormer, J.; Jones, P.; Boutin, R.D.; Lenchik, L.; Fei, B. Abdominal muscle segmentation from CT using a convolutional neural network. Proc. SPIE Int. Soc. Opt. Eng. 2020, 11317, 113170L.
Lee, H.; Troschel, F.M.; Tajmir, S.; Fuchs, G.; Mario, J.; Fintelmann, F.J.; Do, S. Pixel-Level Deep Segmentation: Artificial Intelligence Quantifies Muscle on Computed Tomography for Body Morphometric Analysis. J. Digit. Imaging 2017, 30, 487–498. [CrossRef]
Lee, J.S.; Kim, Y.S.; Kim, E.Y.; Jin, W. Prognostic significance of CT-determined sarcopenia in patients with advanced gastric cancer. PLoS ONE 2018, 13, e0202700. [CrossRef]
Cho, Y.; Kim, J.W.; Keum, K.C.; Lee, C.G.; Jeung, H.C.; Lee, I.J. Prognostic Significance of Sarcopenia With Inflammation in Patients With Head and Neck Cancer Who Underwent Definitive Chemoradiotherapy. Front. Oncol. 2018, 8, 457. [CrossRef]
Kim, E.Y.; Lee, H.Y.; Kim, Y.S.; Park, I.; Ahn, H.K.; Cho, E.K.; Jeong, Y.M.; Kim, J.H. Prognostic significance of cachexia score assessed by CT in male patients with small cell lung cancer. Eur. J. Cancer Care 2018, 27, e12695. [CrossRef]
Daly, L.E.; Power, D.G.; O’Reilly, Á.; Donnellan, P.; Cushen, S.J.; O’Sullivan, K.; Twomey, M.; Woodlock, D.P.; Redmond, H.P.; Ryan, A.M. The impact of body composition parameters on ipilimumab toxicity and survival in patients with metastatic melanoma. Br. J. Cancer 2017, 116, 310–317. [CrossRef] [PubMed]
Martin, L.; Birdsell, L.; Macdonald, N.; Reiman, T.; Clandinin, M.T.; McCargar, L.J.; Murphy, R.; Ghosh, S.; Sawyer, M.B.; Baracos, V.E. Cancer cachexia in the age of obesity: Skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J. Clin. Oncol. 2013, 31, 1539–1547. [CrossRef] [PubMed]
Lanic, H.; Kraut-Tauzia, J.; Modzelewski, R.; Clatot, F.; Mareschal, S.; Picquenot, J.M.; Stamatoullas, A.; Leprêtre, S.; Tilly, H.; Jardin, F. Sarcopenia is an independent prognostic factor in elderly patients with diffuse large B-cell lymphoma treated with immunochemotherapy. Leuk. Lymphoma 2014, 55, 817–823. [CrossRef] [PubMed]
Jabbour, J.; Manana, B.; Zahreddine, A.; Saade, C.; Charafeddine, M.; Bazarbachi, A.; Blaise, D.; El-Cheikh, J. Sarcopenic obesity derived from PET/CT predicts mortality in lymphoma patients undergoing hematopoietic stem cell transplantation. Curr. Res. Transl. Med. 2019, 67, 93–99. [CrossRef]
Chu, M.P.; Lieffers, J.; Ghosh, S.; Belch, A.; Chua, N.S.; Fontaine, A.; Sangha, R.; Turner, R.A.; Baracos, V.E.; Sawyer, M.B. Skeletal muscle density is an independent predictor of diffuse large B-cell lymphoma outcomes treated with rituximab-based chemoimmunotherapy. J. Cachexia Sarcopenia Muscle 2017, 8, 298–304. [CrossRef]
Le Gouill, S.; Ghesquieres, H.; Obéric, L.; Morschhauser, F.; Tilly, H.; Ribrag, V.; Lamy, T.; Thieblemont, C.; Maisonneuve, H.; Gressin, R.; et al. Obinutuzumab versus Rituximab in young patients with advanced DLBCL, a PET-guided and randomized phase 3 study by LYSA. Blood 2020, 137, 2307–2320. [CrossRef]
Le Gouill, S.; Thieblemont, C.; Oberic, L.; Moreau, A.; Bouabdallah, K.; Dartigeas, C.; Damaj, G.; Gastinne, T.; Ribrag, V.; Feugier, P.; et al. Rituximab after Autologous Stem-Cell Transplantation in Mantle-Cell Lymphoma. N. Engl. J. Med. 2017, 377, 1250–1260. [CrossRef]
Dice, L.R. Measures of the Amount of Ecologic Association Between Species. Ecology 1945, 26, 297–302. [CrossRef]
Belharbi, S.; Chatelain, C.; Hérault, R.; Adam, S.; Thureau, S.; Chastan, M.; Modzelewski, R. Spotting L3 slice in CT scans using deep convolutional network and transfer learning. Comput. Biol. Med. 2017, 87, 95–103. [CrossRef]
Morsbach, F.; Zhang, Y.-H.; Martin, L.; Lindqvist, C.; Brismar, T. Body composition evaluation with computed tomography: Contrast media and slice thickness cause methodological errors. Nutrition 2019, 59, 50–55. [CrossRef] [PubMed]
Fuchs, G.; Chretien, Y.R.; Mario, J.; Do, S.; Eikermann, M.; Liu, B.; Yang, K.; Fintelmann, F.J. Quantifying the effect of slice thickness, intravenous contrast and tube current on muscle segmentation: Implications for body composition analysis. Eur. Radiol. 2018, 28, 2455–2463. [CrossRef] [PubMed]
Sabel, M.S.; Lee, J.; Cai, S.; Englesbe, M.J.; Holcombe, S.; Wang, S. Sarcopenia as a prognostic factor among patients with stage III melanoma. Ann. Surg. Oncol. 2011, 18, 3579–3585. [CrossRef] [PubMed]
Antoun, S.; Lanoy, E.; Iacovelli, R.; Albiges-Sauvin, L.; Loriot, Y.; Merad-Taoufik, M.; Fizazi, K.; di Palma, M.; Baracos, V.E.; Escudier, B. Skeletal muscle density predicts prognosis in patients with metastatic renal cell carcinoma treated with targeted therapies. Cancer 2013, 119, 3377–3384. [CrossRef]