Article (Scientific journals)
Many-Body Quantum State Diffusion for Non-Markovian Dynamics in Strongly Interacting Systems.
Flannigan, Stuart; Damanet, François; Daley, Andrew J.
2022In Physical Review Letters, 128 (6), p. 063601
Peer Reviewed verified by ORBi
 

Files


Full Text
PhysRevLett.128.063601.pdf
Author postprint (551.95 kB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Hubbard-Holstein model; Interacting system; Many body; Many-body systems; Network methods; Non-Markovian; Non-markovian dynamics; Open quantum systems; Phonon mode; Quantum state; Physics and Astronomy (all); Quantum Physics; General Physics and Astronomy
Abstract :
[en] Capturing non-Markovian dynamics of open quantum systems is generally a challenging problem, especially for strongly interacting many-body systems. In this Letter, we combine recently developed non-Markovian quantum state diffusion techniques with tensor network methods to address this challenge. As a first example, we explore a Hubbard-Holstein model with dissipative phonon modes, where this new approach allows us to quantitatively assess how correlations spread in the presence of non-Markovian dissipation in a 1D many-body system. We find regimes where correlation growth can be enhanced by these effects, offering new routes for dissipatively enhancing transport and correlation spreading, relevant for both solid state and cold atom experiments.
Disciplines :
Physics
Author, co-author :
Flannigan, Stuart ;  Department of Physics and SUPA, University of Strathclyde, Glasgow G4 0NG, United Kingdom
Damanet, François  ;  Université de Liège - ULiège > Département de physique
Daley, Andrew J. ;  Department of Physics and SUPA, University of Strathclyde, Glasgow G4 0NG, United Kingdom
Language :
English
Title :
Many-Body Quantum State Diffusion for Non-Markovian Dynamics in Strongly Interacting Systems.
Publication date :
11 February 2022
Journal title :
Physical Review Letters
ISSN :
0031-9007
eISSN :
1079-7114
Publisher :
American Physical Society, United States
Volume :
128
Issue :
6
Pages :
063601
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
Funders :
EPSRC - Engineering and Physical Sciences Research Council [GB]
AFOSR - Air Force Office of Scientific Research [US-VA] [US-VA]
Horizon 2020 Framework Programme
F.R.S.-FNRS - Fonds de la Recherche Scientifique [BE]
CÉCI - Consortium des Équipements de Calcul Intensif [BE]
Funding text :
We thank Walter Strunz, Valentin Link, Richard Hartmann, Adrian Kantian, Sebastian Paeckel, and Peter Kirton for helpful discussions. Work at the University of Strathclyde was supported by the EPSRC Programme Grant DesOEQ (EP/P009565/1), by AFOSR Grant No. FA9550-18-1-0064, and by the European Union’s Horizon 2020 research and innovation program under Grant No. 817482 PASQuanS. F. D. acknowledges the Belgian F.R.S.-FNRS for financial support. Computational resources have been provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11 and by the Walloon Region.
Commentary :
9 pages, 5 figures
Available on ORBi :
since 17 March 2022

Statistics


Number of views
34 (6 by ULiège)
Number of downloads
3 (3 by ULiège)

Scopus citations®
 
17
Scopus citations®
without self-citations
16
OpenCitations
 
3

Bibliography


Similar publications



Contact ORBi