biomass; cyclic carbonates; deoxydehydration; platform chemicals; polyols; Bio-based; Biomacromolecule; Biorefining; Industrial potentials; Infinite reservoirs; Lower complexity; Platform molecules; Renewable resource; Sustainable resources; Vicinal diols; Environmental Chemistry; Chemical Engineering (all); Materials Science (all); Energy (all); General Energy; General Materials Science; General Chemical Engineering
Abstract :
[en] The previous decade has witnessed a drastic increase of European incentives aimed at pushing forward the transition from an exclusively petro-based economy toward a strong and homogeneous bio-based economy. Since 2012, numerous programs have been developed to stimulate and promote research and innovation relying on sustainable and renewable resources. Terrestrial biomass is a virtually infinite reservoir of biomacromolecules, the biorefining of which provides platform molecules of low complexity yet with tremendous industrial potential. Among such bio-based platform molecules, polyols and, more specifically, molecules featuring vicinal diols have gained tremendous interest and have stimulated an increasing research effort from the chemistry and chemical engineering communities. This Review revolves around the most promising process conditions and technologies reported since 2012 that specifically target bio-based vicinal diols and promote their transformation into value-added molecules of wide industrial interest, such as olefins, epoxides, cyclic carbonates, and ketals.
Research Center/Unit :
MolSys - Molecular Systems - ULiège
Disciplines :
Chemistry
Author, co-author :
Muzyka, Claire ; Université de Liège - ULiège > Molecular Systems (MolSys)
Monbaliu, Jean-Christophe ; Université de Liège - ULiège > Département de chimie (sciences) > Center for Integrated Technology and Organic Synthesis
Language :
English
Title :
Perspectives for the Upgrading of Bio-Based Vicinal Diols within the Developing European Bioeconomy.
The overall European Bioeconomy strategy generates a turnover around € 2.3 trillion and an added value worth € 620 million, however, the current situation is still far from what was expected by the Organization for Economic Cooperation and Development (OECD). While this overall strategy is a critical pillar toward a transition for an increased sustainability, the spreading and understanding of this strategy only started a decade ago, although its first mention already dates back to 1987 (Figure 1 ). The original report published by the World Commission on Environment and Development highlighted the urgent need to transition toward sustainable development and introduced the concept of bio‐based economy or Bioeconomy. In Europe, the early 2000s witnessed the inception of the term Bioeconomy, also known as knowledge‐based Bioeconomy, within the political sphere. It then rapidly became a major objective and was launched as global strategy advocated by the European Union. The foundations of Bioeconomy were set during several European Commission (EC) strategical agendas. To name a few examples, the White Paper (1993) stressed the key role played by biotechnologies in innovation and growth and the Lisboa Agenda (2000) aimed at boosting the EU economy through knowledge and innovations. Later in 2002, EC acknowledged life science and biotechnologies as the milestones to fulfill the main objectives of the Lisboa Agenda. Following up these strategical agendas, the sourcing and upgrading of bio‐based products were identified as one of the 6 key sectors for setting new paradigms for the overall European market by the Lead Market initiative, a policy promoting EU Bioeconomy between 2007–2013. Similarly, Horizon 2020 (H2020), a major EU research and innovation program (2014–2020), attempted to secure EU global competitiveness through the funding of world‐class public/private collaborative research programs aimed at unlocking innovation. H2020 relied on an approximate budget of € 80 billion with supplemental private investments. In the continuity of this project, Horizon Europe took over in early 2021 and will spread over 7 years with an even higher strike power compared to H2020, reaching € 95.5 billion. More than half of this budget will be dedicated to modernizing and accelerating green and digital transitions, as well as to strengthening Europe's resilience and crisis preparedness, its competitiveness and its leadership. Such momentum and overall strategy fall under the umbrella of a much broader strategic EU instrument, that is, the European Strategy Forum on Research Infrastructures (ESFRI), which stimulates the creation and development of top‐notch research facilities to “develop the scientific integration of Europe and to strengthen its international outreach”. [1] [2] [3] [4] [5] [6]This work was supported by the University of Liège (Welcome Grant WG‐13/03, JCMM) and the F.R.S.‐FNRS (Incentive grant for scientific research MIS F453020F and CDR J.0133.21, JCMM).
Roadmap for the Chemical Industry towards a Bioeconomy, https://roadtobio.eu/uploads/publications/deliverables/RoadToBio_D21_RegulatoryBarriers.pdf (accessed on 10-17-21).
B. R. Keeble, Med. War 1988, 4, 17–25.
K. McCormick, N. Kautto, Sustainability 2013, 5, 2589–2608.
What is Horizon 2020?, http://h2020ni.com/what-is-horizon-2020/ (accessed on 10-30-21).
What is Horizon Europe?, https://www.horizon-eu.eu/ (accessed on 10-12-21).
ESFRI: Making science happen, https://www.esfri.eu/sites/default/files/White_paper_ESFRI-final.pdf (accesed on 12-09-21).
Innovation for sustainable growth: A bioeconomy for Europe, https://op.europa.eu/en/publication-detail/-/publication/1f0d8515-8dc0-4435-ba53-9570e47dbd51 (accesed on 10-5-21).
Review of the 2012 European Bioeconomy Strategy, https://ec.europa.eu/information_society/newsroom/image/document/2018-6/review_of_2012_eu_bes_2E89B85F-950B-9C84-5B426D1C24851387_49692.pdf (accesed on 10-5-21).
RoadToBio, https://roadtobio.eu/uploads/publications/roadmap/RoadToBio_action_plan.pdf (accessed on 10-5-21).
Bio-based opportunities for the chemical industry: Where bio-based chemicals meet existing value chains in Europe, https://roadtobio.eu/uploads/publications/deliverables/RoadToBio_D11_Bio-based_opportunities_for_the_chemical_industry.pdf (accessed on 09-22-21).
What are Technology Readiness Levels (TLRs) and to which Horizon 2020 call topics are they applicable? https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/support/faq/2890 (accessed on 09-09-21).
Roadmap for the Chemical Industry in Europe towards a Bioeconomy: Concept of bio-based and circular economy, https://roadtobio.eu/uploads/publications/deliverables/RoadToBio_D25_Biobased_and_circular_economy.pdf (accessed on 09-16-21).
Renewable Energy-Recast to 2030 (RED II), https://ec.europa.eu/jrc/en/jec/renewable-energy-recast-2030-red-ii (accessed on 10-03-21).
M. Carus, L. Dammer, Ind. Biotechnol. 2018, 14, 83–91.
F. Martins, C. Felgueiras, M. Smitkova, N. Caetano, Energies 2019, 12, 964.
N. N. Tshibalonza, J. C. M. Monbaliu, Green Chem. 2020, 22, 4801–4848.
Top Value Added Chemicals from Biomass Volume I-Results of Screening for Potential Candidates from Sugars and Synthesis Gas Produced by the Staff at Pacific Northwest National Laboratory (PNNL) National Renewable Energy Laboratory (NREL) Office of Biomass, http://www.osti.gov/bridge (accessed on 10-5-21).
J. J. Bozell, G. R. Petersen, Green Chem. 2010, 12, 539–554.
D. Voet, J. G. Voet, Biochemistry, 2nd ed., John Wiley & Sons (New York, US), 1996, pp. 649–655.
J. ten Dam, U. Hanefeld, ChemSusChem 2011, 4, 1017–1034.
E. Santacesaria, R. Vitiello, R. Tesser, V. Russo, R. Turco, M. Di Serio, Ind. Eng. Chem. Res. 2013, 53, 8939–8962.
H. Zhou, H. Zhang, S. Mu, W.-Z. Zhang, W.-M. Ren, X.-B. Lu, Green Chem. 2019, 21, 6335–6341.
L. H. Han, J. Y. Li, Q. W. Song, K. Zhang, Q. X. Zhang, X. F. Sun, P. Liu, Chin. Chem. Lett. 2020, 31, 341–344.
I. Corrêa, R. P. V. Faria, A. E. Rodrigues, Sustain. Chem. 2021, 2, 286–324.
N. N. Tshibalonza, J.-C. M. Monbaliu, Green Chem. 2017, 19, 3006–3013.
R. Gérardy, D. P. Debecker, J. Estager, P. Luis, J. C. M. Monbaliu, Chem. Rev. 2020, 120, 7219–7347.
Y. Nakagawa, T. Kasumi, J. Ogihara, M. Tamura, T. Arai, K. Tomishige, ACS Omega 2020, 5, 2520–2530.
A. Rywińska, M. Marcinkiewicz, E. Cibis, W. Rymowicz, Prep. Biochem. Biotechnol. 2015, 45, 515–529.
O. Rosales-Calderon, V. Arantes, Biotechnol. Biofuels 2019, 12, 240.
M. Rakicka-Pustułka, A. M. Mirończuk, E. Celińska, W. Białas, W. Rymowicz, J. Cleaner Prod. 2020, 257, 120533.
Reducing Added Sugars with Polyols, https://www.ift.org/news-and-publications/food-technology-magazine/issues/2016/november/features/reducing-added-sugars-with-polyols (accessed on 09-20-21).
A. Muscat, E. M. de Olde, I. J. M. de Boer, R. Ripoll-Bosch, Glob. Food Sec. 2020, 25, 100330.
A. N. Marchesan, M. P. Oncken, R. Maciel Filho, M. R. Wolf Maciel, Green Chem. 2019, 21, 5168–5194.
Ethylene glycols, https://www.indiaglycols.com/divisions/ethylene_glycols.htm (accessed on 09-24-21).
Bio-Based Chemicals: A 2020 Update, https://www.ieabioenergy.com/wp-content/uploads/2020/02/Bio-based-chemicals-a-2020-update-final-200213.pdf (accessed on 09-17-21).
S. Rebsdat, D. Mayer, in Ullmann's Encyclopedia of Industrial Chemistry, 6th ed., Wiley-VCH (Weinheim, DE), 2012, pp. 531–546.
I. Zahid, M. Ayoub, B. B. Abdullah, M. H. Nazir, M. Ameen, Zulqarnain, M. H. Mohd Yusoff, A. Inayat, M. Danish, Ind. Eng. Chem. Res. 2020, 59, 20961–20978.
Cargill production of biodiesel using sewage water, https://www.lecho.be/entreprises/energie/cargill-produira-a-gand-du-diesel-a-partir-d-eaux-usees/10259573.html (accessed on 10-11-21).
H. Aatola, M. Larmi, T. Sarjovaara, SAE Int. J. Engines 2009, 1, 1251–1262.
J. Kaur, A. K. Sarma, M. K. Jha, P. Gera, Biotechnol. Rep. 2020, 27, e00487.
S. Nomanbhay, M. Y. Ong, K. W. Chew, P.-L. Show, M. K. Lam, W.-H. Chen, Energies 2020, 13, 1483.
H. Russmayer, M. Egermeier, D. Kalemasi, M. Sauer, Biotechnol. Adv. 2019, 37, 107395.
L. Kumar, R. Kaur, R. Tyagi, P. Drogui, Bioresour. Technol. 2021, 323, 124565.
A. Rodrigues, J. C. Bordado, R. G. dos Santos, Energies 2017, 10, 1817.
R. S. Varma, C. Len, Curr. Opin. Green Sustain. Chem. 2019, 15, 83–90.
A. R. Abbasi, J. Liu, Z. Wang, A. Zhao, H. Ying, L. Qu, M. A. Alam, W. Xiong, J. Xu, Y. Lv, Front. Bioeng. Biotechnol. 2021, 9, 648382.
H. Schiweck, A. Bär, R. Vogel, E. Schwarz, M. Kunz, C. Dusautois, A. Clement, C. Lefranc, B. Lüssem, M. Moser, S. Peters, in Ullmann's Encyclopedia of Industrial Chemistry, 6th ed.,Wiley-VCH (Weinheim, DE), 2012, pp. 1–37.
Erythritol Market Report 2021, https://www.wboc.com/story/44457236/erythritol-market-report-2021-production-capacity-demand-and-supply-sales-margin-cost-analysis-2024 (accessed on 10-29-21).
S. N. Gunasekara, J. Stalin, M. Marçal, R. Delubac, A. Karabanova, J. N. Wei Chiu, V. Martin, Energy Procedia 2017, 135, 249–262.
P. Chi, S. Wang, X. Ge, M. Bilal, P. Fickers, H. Cheng, Biochem. Eng. J. 2019, 149, 107259.
W. H. Faveere, S. Van Praet, B. Vermeeren, K. N. R. Dumoleijn, K. Moonen, E. Taarning, B. F. Sels, Angew. Chem. Int. Ed. 2021, 60, 12204–12223.
J. B. Greenblatt, D. J. Miller, J. W. Ager, F. A. Houle, I. D. Sharp, Joule 2018, 2, 381–420.
A. Mohsenzadeh, A. Zamani, M. J. Taherzadeh, ChemBioEng Rev. 2017, 4, 75–91.
X. Li, Y. Zhang, ACS Catal. 2016, 6, 143–150.
C. V. Pramod, R. Fauziah, K. Seshan, J. P. Lange, Catal. Sci. Technol. 2018, 8, 289–296.
T. T. N. Nguyen, M. Huchede, E. Blanco, F. Morfin, J. L. Rousset, L. Massin, M. Aouine, V. Bellière-Baca, J. M. M. Millet, Appl. Catal. A 2018, 549, 170–178.
G. M. Lari, G. Pastore, M. Haus, Y. Ding, S. Papadokonstantakis, C. Mondelli, J. Pérez-Ramírez, Energy Environ. Sci. 2018, 11, 1012–1029.
A. Kostyniuk, D. Bajec, P. Djinović, B. Likozar, Chem. Eng. J. 2020, 394, 124945.
K. Weissermel, H.-J. Arpe, P. Kalck, B. Zahner, in Chimie Organique Industrielle, 3th ed., DeBoeck Université (Louvain-la-Neuve, BE), 2000, pp. 1–453.
M. Sutter, E. Da Silva, N. Duguet, Y. Raoul, E. Métay, M. Lemaire, Chem. Rev. 2015, 115, 8609–8651.
I. Pala-Rosas, J. L. Contreras, J. Salmones, B. Zeifert, R. López-Medina, J. Navarrete-Bolaños, S. Hernández-Ramírez, J. Pérez-Cabrera, A. A. F.-M. de Oca, Catalysts 2021, 11, 360.
M. Pagliaro, in Glycerol, 1st ed., Elsevier (Sawston, UK), 2017, pp. 23–57.
R. A. Dagle, A. D. Winkelman, K. K. Ramasamy, V. L. Dagle, R. S. Weber, Ind. Eng. Chem. Res. 2020, 59, 4843–4853.
E. V. Makshina, M. Dusselier, W. Janssens, J. Degrève, P. A. Jacobs, B. F. Sels, Chem. Soc. Rev. 2014, 43, 7917–7953.
A. C. Dimian, N. I. Bezedea, C. S. Bildea, Ind. Eng. Chem. Res. 2021, 60, 8475–8492.
S. R. Schmidt, in Catalysis of Organic Reactions: Twenty-first Conference, 1st ed., CRC Press (Boca Raton, US), 2006, pp. 80–90.
T. J. L. Mustard, D. J. MacK, J. T. Njardarson, P. H. Y. Cheong, J. Am. Chem. Soc. 2013, 135, 1471–1475.
L. A. Batory, C. E. McInnis, J. T. Njardarson, J. Am. Chem. Soc. 2006, 128, 16054–16055.
E. Arceo, P. Marsden, R. G. Bergman, J. A. Ellman, Chem. Commun. 2009, 3357–3359.
J. R. Dethlefsen, P. Fristrup, ChemSusChem 2015, 8, 767–775.
J. R. Dethlefsen, D. Lupp, A. Teshome, L. B. Nielsen, P. Fristrup, ACS Catal. 2015, 5, 3638–3647.
M. Shiramizu, F. D. Toste, Angew. Chem. Int. Ed. 2012, 51, 8082–8086;
Angew. Chem. 2012, 124, 8206–8210.
M. Shiramizu, F. D. Toste, Angew. Chem. Int. Ed. 2013, 52, 12905–12909;
Angew. Chem. 2013, 125, 13143–13147.
E. Arceo, J. Ellman, R. Bergman, ChemSusChem 2010, 3, 811–813.
P. C. K. Vesborg, T. F. Jaramillo, RSC Adv. 2012, 2, 7933–7947.
G. Chapman, K. M. Nicholas, Chem. Commun. 2013, 49, 8199–8201.
J. A. Novotny, C. A. Peterson, Adv. Nutr. Res. 2018, 9, 272–273.
A. Wilk, B. Wiszniewska, Postep. High Med Dosw 2017, 71, 850–859.
J. R. Dethlefsen, D. Lupp, B. C. Oh, P. Fristrup, ChemSusChem 2014, 7, 425–428.
M. Stalpaert, D. De Vos, ACS Sustainable Chem. Eng. 2018, 6, 12197–12204.
L. Sandbrink, K. Beckerle, I. Meiners, R. Liffmann, K. Rahimi, J. Okuda, R. Palkovits, ChemSusChem 2017, 10, 1375–1379.
K. Beckerle, A. Sauer, T. P. Spaniol, J. Okuda, Polyhedron 2016, 116, 105–110.
A. R. Petersen, L. B. Nielsen, J. R. Dethlefsen, P. Fristrup, ChemCatChem 2018, 10, 769–778.
H. S. Oliveira, P. P. Souza, L. C. A. Oliveira, Catal. Today 2017, 289, 258–263.
Y. Zhang, F. Sun, H.-Y. Zhang, G. Ying, J. Zhao, Ind. Eng. Chem. Res. 2018, 57, 4553–4561.
R. Sun, M. Zheng, X. Li, J. Pang, A. Wang, X. Wang, T. Zhang, Green Chem. 2017, 19, 638–642.
G. Crank, F. Eastwod, Aust. J. Chem. 1964, 17, 1385–1391.
N. N. Tshibalonza, R. Gérardy, Z. Alsafra, G. Eppe, J.-C. M. Monbaliu, Green Chem. 2018, 20, 5147–5157.
A. Konaka, T. Tago, T. Yoshikawa, A. Nakamura, T. Masuda, Appl. Catal. B 2014, 146, 267–273.
A. Konaka, T. Tago, T. Yoshikawa, H. Shitara, Y. Nakasaka, T. Masuda, Ind. Eng. Chem. Res. 2013, 52, 15509–15515.
G. Sánchez, J. Friggieri, C. Keast, M. Drewery, B. Z. Dlugogorski, E. Kennedy, M. Stockenhuber, Appl. Catal. B 2014, 152–153, 117–128.
G. Sánchez, J. Friggieri, A. A. Adesina, B. Z. Dlugogorski, E. M. Kennedy, M. Stockenhuber, Catal. Sci. Technol. 2014, 4, 3090–3098.
R. C. R. Santos, D. M. V. Braga, A. N. Pinheiro, E. R. Leite, V. N. Freire, E. Longhinotti, A. Valentini, Catal. Sci. Technol. 2016, 6, 4986–5002.
G. Sánchez, B. Z. Dlugogorski, E. M. Kennedy, M. Stockenhuber, Appl. Catal. A 2016, 509, 130–142.
A. Kostyniuk, D. Bajec, P. Djinović, B. Likozar, Chem. Eng. J. 2020, 397, 125430.
R. Almeida, M. F. Ribeiro, A. Fernandes, J. P. Lourenço, Catal. Commun. 2019, 127, 20–24.
H. Lan, X. Xiao, S. Yuan, B. Zhang, G. Zhou, Y. Jiang, Catal. Lett. 2017, 147, 2187–2199.
H. Lan, Q. Yao, Y. Zhou, B. Zhang, Y. Jiang, J. Mol. Catal. 2020, 498, 111279.
H. Zhao, Y. Jiang, H. Liu, Y. Long, Z. Wang, Z. Hou, Appl. Catal. B 2020, 277, 119187.
M. H. Barecka, M. Skiborowski, A. Górak, Chem. Eng. Res. Des. 2017, 123, 295–316.
D. Zhang, P. Hang, G. Liu, J. Cleaner Prod. 2020, 275, 122773.
L. G. Pinaeva, A. S. Noskov, Pet. Chem. 2020, 60, 1191–1206.
M. Bochenek, N. Oleszko-Torbus, W. Wałach, D. Lipowska-Kur, A. Dworak, A. Utrata-Wesołek, Polym. Rev. 2020, 60, 717–767.
M. Ricciardi, F. Passarini, I. Vassura, A. Proto, C. Capacchione, R. Cucciniello, D. Cespi, ChemSusChem 2017, 10, 2291–2300.
A. Wróblewska, A. Fajdek, J. Hazard. Mater. 2010, 179, 258–265.
E. Petit, L. Bosch, A. M. Costa, I. Rodríguez-Izquierdo, D. Sepúlveda-Crespo, A. M. Muñoz-Fernández, J. Vilarrasa, ChemMedChem 2021, 16, 2217–2222.
A. Wróblewska, A. Fajdek, J. Wajzberg, E. Milchert, J. Hazard. Mater. 2009, 170, 405–410.
Green glycidol pilot plant in the UK, https://www.thechemicalengineer.com/news/green-glycidol-pilot-plant-in-the-uk (accessed on 10-28-21).
Green Lizard Technologies: Green Glycidol, https://greenlizardtechnologies.com/what-we-do/green-glycidol-glycerol/ (accessed on 10-26-21).
Y. A. Alassmy, Z. A. Pour, P. P. Pescarmona, ACS Sustainable Chem. Eng. 2020, 8, 7993–8003.
J. Sun, J. Ren, S. Zhang, W. Cheng, Tetrahedron Lett. 2009, 50, 423–426.
J. C. J. Bart, N. Palmeri, S. Cavallaro, in Biodiesel Science and Technology: From Soil to Oil, Elsevier (Sawston, UK), 2010, pp. 571–624.
M. O. Sonnati, S. Amigoni, E. P. Taffin De Givenchy, T. Darmanin, O. Choulet, F. Guittard, Green Chem. 2013, 15, 283–306.
D. Cespi, R. Cucciniello, M. Ricciardi, C. Capacchione, I. Vassura, F. Passarini, A. Proto, Green Chem. 2016, 18, 4559–4570.
A. Milewski, D. Czechowicz, A. Jakóbik-Kolon, P. Dydo, ACS Sustainable Chem. Eng. 2019, 7, 18640–18646.
R. Morodo, R. Gérardy, G. Petit, J. C. M. Monbaliu, Green Chem. 2019, 21, 4422–4433.
T. Y. Kim, J. Baek, C. K. Song, Y. S. Yun, D. S. Park, W. Kim, J. W. Han, J. Yi, J. Catal. 2015, 323, 85–99.
Y. K. Endah, M. S. Kim, J. Choi, J. Jae, S. D. Lee, H. Lee, Catal. Today 2017, 293–294, 136–141.
C. L. Bolívar-Diaz, V. Calvino-Casilda, F. Rubio-Marcos, J. F. Fernández, M. A. Bañares, Appl. Catal. B 2013, 129, 575–579.
S. M. Gade, M. K. Munshi, B. M. Chherawalla, V. H. Rane, A. A. Kelkar, Catal. Commun. 2012, 27, 184–188.
Y. Zhou, F. Ouyang, Z. Bin Song, Z. Yang, D. J. Tao, Catal. Commun. 2015, 66, 25–29.
M. K. Munshi, S. M. Gade, V. H. Rane, A. A. Kelkar, RSC Adv. 2014, 4, 32127–32133.
J. S. Choi, F. S. H. Simanjuntaka, J. Y. Oh, K. I. Lee, S. D. Lee, M. Cheong, H. S. Kim, H. Lee, J. Catal. 2013, 297, 248–255.
D. J. Darensbourg, A. D. Yeung, Green Chem. 2013, 16, 247–252.
Y. T. Algoufi, U. G. Akpan, M. Asif, B. H. Hameed, Appl. Catal. A 2014, 487, 181–188.
A. Canela-Xandri, M. Balcells, G. Villorbina, P. Christou, R. Canela-Garayoa, Molecules 2020, 25, 2511.
B. M. Bell, J. R. Briggs, R. M. Campbell, S. M. Chambers, P. D. Gaarenstroom, J. G. Hippler, B. D. Hook, K. Kearns, J. M. Kenney, W. J. Kruper, D. James Schreck, C. N. Theriault, C. P. Wolfe, Clean 2008, 36, 657–661.
M. Ricciardi, D. Cespi, M. Celentano, A. Genga, C. Malitesta, A. Proto, C. Capacchione, R. Cucciniello, Sustain. Chem. Pharm. 2017, 6, 10–13.
Epichlorohydrin prices in Europe, https://publications.jrc.ec.europa.eu/repository/handle/ (accessed on 10-21-21).
G. M. Lari, G. Pastore, C. Mondelli, J. Pérez-Ramírez, Green Chem. 2018, 20, 148–159.
G. Gibson, in Brydson's Plastics. Materials, 8th ed., Elsevier (Sawston, UK), 2017, pp. 773–797.
X. Hou, Y. Fu, X. Zhu, H. Yin, A. Wang, Asia-Pac. Chem. 2015, 10, 626–632.
R. Vitiello, V. Russo, R. Turco, R. Tesser, M. Di Serio, E. Santacesaria, Chin. J. Catal. 2014, 35, 663–669.
D. Giomi, M. Malavolti, O. Piccolo, A. Salvini, A. Brandi, RSC Adv. 2014, 4, 46319–46326.
R. Tesser, M. Di Serio, R. Vitiello, V. Russo, E. Ranieri, E. Speranza, E. Santacesaria, Ind. Eng. Chem. Res. 2012, 51, 8768–8776.
R. Vitiello, R. Tesser, E. Santacesaria, M. Di Serio, Ind. Eng. Chem. Res. 2016, 55, 1484–1490.
C. A. de Araujo Filho, K. Eränen, J. P. Mikkola, T. Salmi, Chem. Eng. Sci. 2014, 120, 88–104.
S. P. Zou, E. H. Du, Z. C. Hu, Y. G. Zheng, Biotechnol. Lett. 2013, 35, 937–942.
F. Xue, Z. Q. Liu, Y. J. Wang, H. Q. Zhu, N. W. Wan, Y. G. Zheng, Catal. Commun. 2015, 72, 147–149.
H. X. Jin, Z. C. Hu, Z. Q. Liu, Y. G. Zheng, Biotechnol. Appl. Biochem. 2012, 59, 170–177.
H. X. Jin, Z. Q. Liu, Z. C. Hu, Y. G. Zheng, Eng. Life Sci. 2013, 13, 385–392.
P. P. Pescarmona, Curr. Opin. Green Sustain. Chem. 2021, 29, 100457.
M. Metzger, B. Strehle, S. Solchenbach, H. A. Gasteiger, J. Electrochem. Soc. 2016, 163, A1219–A1225.
K. Shukla, V. C. Srivastava, Catal. Rev. Sci. Eng. 2017, 59, 1–43.
G. Fiorani, A. Perosa, M. Selva, Green Chem. 2018, 20, 288–322.
J. Granados-Reyes, P. Salagre, Y. Cesteros, Appl. Catal. A 2017, 536, 9–17.
Glycerol Carbonate Market, https://www.transparencymarketresearch.com/glycerol-carbonate-market.html (accessed on 10-14-21).
Glycerol Carbonate Market and applications, https://www.transparencymarketresearch.com/glycerol-carbonate-market.html (accessed on 10-04-21).
J. Ma, J. Song, H. Liu, J. Liu, Z. Zhang, T. Jiang, H. Fan, B. Han, Green Chem. 2012, 14, 1743–1748.
X. Su, W. Lin, H. Cheng, C. Zhang, Y. Wang, X. Yu, Z. Wu, F. Zhao, Green Chem. 2017, 19, 1775–1781.
R. Gérardy, J. Estager, P. Luis, D. P. Debecker, J. C. M. Monbaliu, Catal. Sci. Technol. 2019, 9, 6841–6851.
W. K. Teng, G. C. Ngoh, R. Yusoff, M. K. Aroua, Energy Convers. Manage. 2014, 88, 484–497.
S. Sahani, S. N. Upadhyay, Y. C. Sharma, Ind. Eng. Chem. Res. 2020, 60, 67–88.
S. Dabral, U. Licht, P. Rudolf, G. Bollmann, A. S. K. Hashmi, T. Schaub, Green Chem. 2020, 22, 1553–1558.
C. Carré, Y. Ecochard, S. Caillol, L. Averous, ChemSusChem 2019, 12, 3410–3430.
F. Siragusa, E. Van Den Broeck, C. Ocando, A. J. Müller, G. De Smet, B. U. W. Maes, J. De Winter, V. Van Speybroeck, B. Grignard, C. Detrembleur, ACS Sustainable Chem. Eng. 2021, 9, 1714–1728.
J. A. Stewart, R. Drexel, B. Arstad, E. Reubsaet, B. M. Weckhuysen, P. C. A. Bruijnincx, Green Chem. 2016, 18, 1605–1618.
S. W. Shao, C. H. Chen, J. R. Chan, T. Y. Juang, M. M. Abu-Omar, C. H. Lin, Green Chem. 2020, 22, 4683–4696.
S. Schmidt, F. J. Gatti, M. Luitz, B. S. Ritter, B. Bruchmann, R. Mülhaupt, Macromolecules 2017, 50, 2296–2303.
P.-K. Dannecker, M. A. R. Meier, Sci. Rep. 2019, 9, 9858.
P. Furtwengler, L. Avérous, Sci. Rep. 2018, 8, 9134.
D. J. Saxon, A. M. Luke, H. Sajjad, W. B. Tolman, T. M. Reineke, Prog. Polym. Sci. 2020, 101, 101196.
S. Schmidt, B. S. Ritter, D. Kratzert, B. Bruchmann, R. Mülhaupt, Macromolecules 2016, 49, 7268–7276.
H. C. Brown, J. H. Brewster, H. Shechter, J. Am. Chem. Soc. 1954, 76, 467–474.
F. Nocito, A. Dibenedetto, Curr. Opin. Green Sustain. Chem. 2020, 21, 34–43.
A. J. Kamphuis, F. Picchioni, P. P. Pescarmona, Green Chem. 2019, 21, 406–448.
M. Honda, M. Tamura, K. Nakao, K. Suzuki, Y. Nakagawa, K. Tomishige, ACS Catal. 2014, 4, 1893–1896.
A.-K. Jmh, H. Wang, E. Elhaj, J. Mater. Sci. Eng. 2019, 8, 1000523.
Q. Zhang, H. Y. Yuan, X. T. Lin, N. Fukaya, T. Fujitani, K. Sato, J. C. Choi, Green Chem. 2020, 22, 4231–4239.
J. A. Castro-Osma, C. Alonso-Moreno, A. Lara-Sánchez, J. Martínez, M. North, A. Otero, Catal. Sci. Technol. 2014, 4, 1674–1684.
J. Liu, D. He, J. CO2 Util. 2018, 26, 370–379.
L. P. Ozorio, C. J. A. Mota, ChemPhysChem 2017, 18, 3260–3265.
C. Hu, M. Yoshida, H. C. Chen, S. Tsunekawa, Y. F. Lin, J. H. Huang, Chem. Eng. Sci. 2021, 235, 116451.
C. Ngassam Tounzoua, B. Grignard, A. Brege, C. Jerome, T. Tassaing, R. Mereau, C. Detrembleur, ACS Sustainable Chem. Eng. 2020, 8, 9698–9710.
V. Aomchad, À. Cristòfol, F. D. Monica, B. Limburg, V. D'Elia, A. W. Kleij, Green Chem. 2021, 23, 1077–1113.
Z. Yu, L. Xu, Y. Wei, Y. Wang, Y. He, Q. Xia, X. Zhang, Z. Liu, Chem. Commun. 2009, 3934–3936.
Y. N. Lim, C. Lee, H.-Y. Jang, Eur. J. Org. Chem. 2014, 2014, 1823–1826.
T. Kitamura, Y. Inoue, T. Maeda, J. Oyamada, Synth. Commun. 2016, 46, 39–45.
M. Mihara, K. Moroga, T. Iwasawa, T. Nakai, T. Ito, T. Ohno, T. Mizuno, Synlett 2018, 29, 1759–1764.
Y. A. Alassmy, P. J. Paalman, P. P. Pescarmona, ChemCatChem 2021, 13, 475–486.
X. Song, Y. Wu, D. Pan, J. Zhang, S. Xu, L. Gao, R. Wei, G. Xiao, J. CO2 Util. 2018, 28, 326–334.
B. Grignard, C. Ngassamtounzoua, S. Gennen, B. Gilbert, R. Méreau, C. Jerome, T. Tassaing, C. Detrembleur, ChemCatChem 2018, 10, 2584–2592.
E. R. Baral, J. H. Lee, J. G. Kim, J. Org. Chem. 2018, 83, 11768–11776.
Z. Wang, R. Gérardy, G. Gauron, C. Damblon, J. C. M. Monbaliu, React. Chem. Eng. 2019, 4, 17–26.
S. Asghari, M. Ghiaci, Ind. Eng. Chem. Res. 2020, 59, 6405–6415.
J. R. Ochoa-Gómez, O. Gómez-Jiménez-Aberasturi, C. Ramírez-López, M. Belsué, Org. Process Res. Dev. 2012, 16, 389–399.
S. Christy, A. Noschese, M. Lomelí-Rodriguez, N. Greeves, J. A. Lopez-Sanchez, Curr. Opin. Green Sustain. Chem. 2018, 14, 99–107.
C. Len, F. Delbecq, C. Cara Corpas, E. Ruiz Ramos, Synthesis 2018, 50, 723–741.
R. I. Khusnutdinov, N. A. Shchadneva, Y. Y. Mayakova, Russ. J. Org. Chem. 2014, 50, 948–952.
A. Kumar, K. Iwatani, S. Nishimura, A. Takagaki, K. Ebitani, Catal. Today 2012, 185, 241–246.
M. Hong, L. Gao, G. Xiao, J. Chem. Res. 2014, 38, 679–681.
Q. Gu, J. Fang, Z. Xu, W. Ni, K. Kong, Z. Hou, New J. Chem. 2018, 42, 13054–13064.
S. Guidi, R. Calmanti, M. Noè, A. Perosa, M. Selva, ACS Sustainable Chem. Eng. 2016, 4, 6144–6151.
K. M. Tomczyk, P. A. Guńka, P. G. Parzuchowski, J. Zachara, G. Rokicki, Green Chem. 2012, 14, 1749–1758.
M. M. Mazurek-Budzyńska, G. Rokicki, M. Drzewicz, P. A. Guńka, J. Zachara, Eur. Polym. J. 2016, 84, 799–811.