[en] Numerous cases of evolutionary trait loss and regain have been reported over the years. Here, we argue that such reverse evolution can also become apparent when trait expression is plastic in response to the environment. We tested this idea for the loss and regain of fat synthesis in parasitic wasps. We first show experimentally that the wasp Leptopilina heterotoma switches lipogenesis on in a fat-poor environment, and completely off in a fat-rich environment. Plasticity suggests that this species did not regain fat synthesis, but that it can be switched off in some environmental settings. We then compared DNA sequence variation and protein domains of several more distantly related parasitoid species thought to have lost lipogenesis, and found no evidence for non-functionality of key lipogenesis genes. This suggests that other parasitoids may also show plasticity of fat synthesis. Last, we used individual-based simulations to show that a switch for plastic expression can remain functional in the genome for thousands of generations, even if it is only used sporadically. The evolution of plasticity could thus also explain other examples of apparent reverse evolution.
Disciplines :
Zoology
Author, co-author :
Visser, Bertanne ; Université de Liège - ULiège > Département GxABT > Gestion durable des bio-agresseurs ; Evolution and Ecophysiology Group, Biodiversity Research Centre, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
Alborn, Hans; Chemistry Research Unit, Center of Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, Department of Agriculture, Gainesville, United States, USA
Rondeaux, Suzon; Evolution and Ecophysiology Group, Biodiversity Research Centre, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
Haillot, Manon; Evolution and Ecophysiology Group, Biodiversity Research Centre, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
Hance, Thierry; Ecology of Interactions and Biological Control Group, Biodiversity Research Centre, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
Rebar, Darren; Department of Biological Sciences, Emporia State University, Emporia, USA
Riederer, Jana; Groningen Institute of Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
Tiso, Stefano; Groningen Institute of Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
Van Eldijk, Timo; Groningen Institute of Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
Weissing, Franz; Groningen Institute of Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
Nieberding, Caroline ; Université de Liège - ULiège > Département des sciences et gestion de l'environnement (Arlon Campus Environnement) > Zoogéographie ; Evolutionary Ecology and Genetics Group, Biodiversity Research Centre, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
Language :
English
Title :
Phenotypic plasticity explains apparent reverse evolution of fat synthesis in parasitic wasps
Ellers, J., Kiers, T., Currie, C. R., Mcdonald, B. R. & Visser, B. Ecological interactions drive evolutionary loss of traits. Ecol. Lett. 15, 1071–1082 (2012). DOI: 10.1111/j.1461-0248.2012.01830.x
Lahti, D. C. et al. Relaxed selection in the wild. Trends Ecol. Evol. 24, 487–496 (2009). DOI: 10.1016/j.tree.2009.03.010
Collin, R. & Miglietta, M. P. Reversing opinions on Dollo’s law. Trends Ecol. Evol. 23, 602–609 (2008). DOI: 10.1016/j.tree.2008.06.013
Esfeld, K. et al. Pseudogenization and resurrection of a speciation gene. Curr. Biol. 28, 3776–3786 (2019). DOI: 10.1016/j.cub.2018.10.019
Zufall, R. A. & Rausher, M. D. Genetic changes associated with floral adaptation restrict future evolutionary potential. Nature 428, 847–850 (2004). DOI: 10.1038/nature02489
Tripp, E. A. & Manos, P. S. Is floral specialization an evolutionary dead-end? Pollination system transitions in Ruellia (Acanthaceae). Evolution 62, 1712–1737 (2008). DOI: 10.1111/j.1558-5646.2008.00398.x
Lee, M. S. Y. & Shine, R. Reptilian viviparity and Dollo’s law. Evolution 52, 1441–1450 (1998). DOI: 10.1111/j.1558-5646.1998.tb02025.x
Igic, B., Bohs, L. & Kohn, J. R. Ancient polymorphism reveals unidirectional breeding system shifts. Proc. Natl. Acad. Sci. U. S. A. 103, 1359–1363 (2006). DOI: 10.1073/pnas.0506283103
Domes, K., Norton, R. A., Maraun, M. & Scheu, S. Reevolution of sexuality breaks Dollo’s Law. Proc. Natl. Acad. Sci. 104, 7139–7144 (2007). DOI: 10.1073/pnas.0700034104
Lynch, V. J. & Wagner, G. P. Did egg-laying boas break dollo’s law? Phylogenetic evidence for reversal to oviparity in sand boas (Eryx: Boidae). Evolution 64, 207–216 (2010). DOI: 10.1111/j.1558-5646.2009.00790.x
Collin, R., & Cipriani, R. Dollo's Law and the Re-Evolution of Shell Coiling. Proc. Biol. Sci. 270 (1533), 2551–2555 (2003). DOI: 10.1098/rspb.2003.2517
Kohlsdorf, T. I. K. & Wagner, G. P. Evidence for the reversibility of digit loss: a phylogenetic study of limb evolution in Bachia (Gymnophthalmidae: Squamata). Evolution 60, 1896–1912 (2006). DOI: 10.1111/j.0014-3820.2006.tb00533.x
Wiens, J. J. Re-evolution of lost mandibular teeth in frogs after more than 200 million years, and re-evaluating Dollo’s law. Evolution 65, 1283–1296 (2011). DOI: 10.1111/j.1558-5646.2011.01221.x
Visser, B. & Ellers, J. Lack of lipogenesis in parasitoids: a review of physiological mechanisms and evolutionary implications. J. Insect Physiol. 54, 1315–1322 (2008). DOI: 10.1016/j.jinsphys.2008.07.014
Visser, B. et al. Loss of lipid synthesis as an evolutionary consequence of a parasitic lifestyle. Proc. Natl. Acad. Sci. 107, 8677–8682 (2010). DOI: 10.1073/pnas.1001744107
Turkish, A. R. & Sturley, S. L. The genetics of neutral lipid biosynthesis: an evolutionary perspective. Am. J. Physiol. Endocrinol. Metab. 297, E19–E27 (2009). DOI: 10.1152/ajpendo.90898.2008
Jenke-kodama, H., Sandmann, A., Müller, R. & Dittmann, E. Evolutionary implications of bacterial polyketide synthases. Mol. Biol. Evol. 22, 2027–2039 (2005). DOI: 10.1093/molbev/msi193
Maier, T., Leibundgut, M. & Ban, N. The crystal structure of a mammalian fatty acid synthase. Science 321, 1315–1323 (2008). DOI: 10.1126/science.1161269
Maier, T., Leibundgut, M., Boehringer, D. & Ban, N. Structure and function of eukaryotic fatty acid synthases. Q. Rev. Biophys. 43, 373–422 (2010). DOI: 10.1017/S0033583510000156
Bukhari, H. S. T., Jakob, R. P. & Maier, T. Evolutionary origins of the multienzyme architecture of giant fungal fatty acid synthase. Structure 22, 1775–1785 (2014). DOI: 10.1016/j.str.2014.09.016
Peters, R. S. et al. Evolutionary history of the Hymenoptera. Curr. Biol. 27, 1013–1018 (2017). DOI: 10.1016/j.cub.2017.01.027
Godfray, H. C. J. Parasitoids: Behavioural and evolutionary ecology (Princeton University Press, 1994). DOI: 10.1515/9780691207025
Prager, L., Bruckmann, A. & Ruther, J. De novo biosynthesis of fatty acids from α-D-glucose in parasitoid wasps of the Nasonia group. Insect Biochem. Mol. Biol. 115, 103256 (2019). DOI: 10.1016/j.ibmb.2019.103256
Visser, B. et al. Transcriptional changes associated with lack of lipid synthesis in parasitoids. Genome Biol. Evol. 4, 752–762 (2012). DOI: 10.1093/gbe/evs065
Visser, B. et al. Variation in lipid synthesis, but genetic homogeneity, among Leptopilina parasitic wasp populations. Ecol. Evol. 8, 7355–7364 (2018). DOI: 10.1002/ece3.4265
Moiroux, J. et al. Local adaptations of life-history traits of a Drosophila parasitoid, Leptopilina boulardi: does climate drive evolution?. Ecol. Entomol. 35, 727–736 (2010). DOI: 10.1111/j.1365-2311.2010.01233.x
Ament, S. A. et al. Mechanisms of stable lipid loss in a social insect. J. Exp. Biol. 214, 3808–3821 (2011). DOI: 10.1242/jeb.060244
Visser, B., Willett, D. S., Harvey, J. A. & Alborn, H. T. Concurrence in the ability for lipid synthesis between life stages in insects. R. Soc. Open Sci. 4, 160815 (2017). DOI: 10.1098/rsos.160815
Abu-Elheiga, L. et al. Mutant mice lacking acetyl-CoA carboxylase 1 are embryonically lethal. Proc. Natl. Acad. Sci. U. S. A. 102, 12011–12016 (2005). DOI: 10.1073/pnas.0505714102
Wakil, S. J. Fatty acid synthase, a proficient multifunctional enzyme. Biochemistry 28, 4523–4530 (1989). DOI: 10.1021/bi00437a001
Geer, B. W., Langevin, M. L. & McKechnie, S. W. Dietary ethanol and lipid synthesis in Drosophila melanogaster. Biochem. Genet. 23, 607–622 (1985). DOI: 10.1007/BF00504295
Zinke, I., Schütz, C. S., Katzenberger, J. D., Bauer, M. & Pankratz, M. J. Nutrient control of gene expression in Drosophila: microarray analysis of starvation and sugar-dependent response. EMBO J. 21, 6162–6173 (2002). DOI: 10.1093/emboj/cdf600
Wang, J. et al. Lipid dynamics, identification, and expression patterns of fatty acid synthase genes in an endoparasitoid, Meteorus pulchricornis (Hymenoptera: Braconidae). Int. J. Mol. Sci. 21, 1–14 (2020).
Wagner, A. Robustness and Evolvability in Living Systems (Princeton University Press, 2007).
Masel, J., King, O. D. & Maughan, H. The loss of adaptive plasticity during long periods of environmental stasis. Am. Nat. 169, 38–46 (2007).
Fleury, F., Gibert, P., Ris, N. & Allemand, R. Ecology and life history evolution of frugivorous Drosophila parasitoids. Adv. Parasitol. 70, 3–44 (2009). DOI: 10.1016/S0065-308X(09)70001-6
Lue, C., Borowy, D., Buffington, M. L. & Leips, J. Geographic and seasonal variation in species diversity and community composition of frugivorous Drosophila (Diptera: Drosophilidae) and their Leptopilina (Hymenoptera: Figitidae) parasitoids. Environ. Entomol. 47, 1096–1106 (2018). DOI: 10.1093/ee/nvy114
Hoffmann, A. R. Y. A. & Harshman, L. G. Desiccation and starvation resistance in Drosophila: patterns of variation at the species, population and intrapopulation levels. Heredity (Edinb). 83, 637–643 (1999). DOI: 10.1046/j.1365-2540.1999.00649.x
Giron, D. & Casas, J. Lipogenesis in an adult parasitic wasp. J. Insect Physiol. 49, 141–147 (2003). DOI: 10.1016/S0022-1910(02)00258-5
Whiting, M. F., Bradler, S. & Maxwell, T. Loss and recovery of wings in stick insects. Nature 421, 264–267 (2003). DOI: 10.1038/nature01313
Stone, G. & French, V. Evolution: Have wings come, gone and come again?. Curr. Biol. 13, PR436-R438 (2003). DOI: 10.1016/S0960-9822(03)00364-6
Goldberg, E. E. & Igic, B. On phylogenetic tests of irreversible evolution. Evolution 62, 2727–2741 (2008). DOI: 10.1111/j.1558-5646.2008.00505.x
Christin, P.-A., Freckleton, R. P. & Osborne, C. P. Can phylogenetics identify C4 origins and reversals?. Trends Ecol. Evol. 25, P403–P409 (2010). DOI: 10.1016/j.tree.2010.04.007
Galis, F., Arntzen, J. W. & Lande, R. Dollo’s law and the irreversibility of digit loss in Bachia. Evolution 64, 1–11 (2010). DOI: 10.1111/j.1558-5646.2009.00844.x
Hall, B. K. Developmental mechanisms underlying the formation of atavisms. Biol. Rev. 59, 89–124 (1984). DOI: 10.1111/j.1469-185X.1984.tb00402.x
Zhang, C.-X., Brisson, J. A. & Xu, H.-J. Molecular mechanisms of wing polymorphism in insects. Annu. Rev. Entomol. 64, 297–314 (2019). DOI: 10.1146/annurev-ento-011118-112448
Parker, D. J. et al. Repeated Evolution of Asexuality Involves Convergent Gene Expression Changes, Mol. Biol. Evol. 36(2), 350–364. 10.1093/molbev/msy217. (2019).
Tvedte, E. S., Logsdon, J. M. & Forbes, A. A. Sex loss in insects: causes of asexuality and consequences for genomes. Curr. Opin. Insect Sci. 31(77), 83 (2019).
Hanschen, E. R., Herron, M. D., Wiens, J. J., Nozaki, H. & Michod, R. E. Repeated evolution and reversibility of self-fertilization in the volvocine green algae. Evolution 72, 386–398 (2018). DOI: 10.1111/evo.13394
Janzen, F.J. & Phillips, P.C. Exploring the evolution of environmental sex determination, especially in reptiles. J. Evol Biol 19, 1775–1784 (2006).
West-Eberhard, M. Developmental Plasticity and Evolution (Oxford University Press, 2003). DOI: 10.1093/oso/9780195122343.001.0001
Sommer, R. J. Phenotypic plasticity: from theory and genetics to current and future challenges. Genetics 215, 1–13 (2020). DOI: 10.1534/genetics.120.303163
Ho, W. C., Li, D., Zhu, Q. & Zhang, J. Phenotypic plasticity as a long-term memory easing readaptations to ancestral environments. Sci. Adv. 6, 1–9 (2020). DOI: 10.1126/sciadv.aba3388
Levis, N. A. & Pfennig, D. W. Evaluating ‘plasticity-first’ evolution in nature: key criteria and empirical approaches. Trends Ecol. Evol. 31, 563–574 (2016). DOI: 10.1016/j.tree.2016.03.012
Levis, N. A. & Pfennig, D. W. Plasticity-led evolution: evaluating the key prediction of frequency-dependent adaptation. Proc. R. Soc. B Biol. Sci. 286, 20182754 (2019). DOI: 10.1098/rspb.2018.2754
Levis, N. A. & Pfennig, D. W. Plasticity-led evolution: a survey of developmental mechanisms and empirical tests. Evol. Dev. 22, 71–87 (2020). DOI: 10.1111/ede.12309
Waddington, C. H. Genetic assimilation of an acquired character. Evolution 7, 118–126 (1953). DOI: 10.1111/j.1558-5646.1953.tb00070.x
Suzuki, Y. & Nijhout, H. F. Evolution of a polyphenism by genetic accommodation. Science 311, 650–652 (2006). DOI: 10.1126/science.1118888
Lann, L., Baaren, J. V. & Visser, B. Dealing with predictable and unpredictable temperatures in a climate change context: the case of parasitoids and their hosts. J. Exp. Biol. 224, jeb238626 (2021). DOI: 10.1242/jeb.238626
R Development Core Team. R: A Language and Environment for Statistical Computing. (2016).
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Statical Soc. 57, 289–300 (1995).
Kraaijeveld, K., Neleman, P., Marien, J., de Meijer, E. & Ellers, J. Genomic resources for Goniozus legneri, Aleochara bilineata and Paykullia maculata, representing three independent origins of the parasitoid lifestyle in insects. G3 Genes Genomes Genet. 9, 987–991 (2019).
Kraaijeveld, K. et al. Decay of sexual trait genes in an asexual parasitoid wasp. Genome Biol. Evol. 8, 3685–3695 (2016).
Marchler-Bauer, A. et al. CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures. Nucl. Acids Res. 45, D200–D203 (2017). DOI: 10.1093/nar/gkw1129
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013). DOI: 10.1093/molbev/mst010
van Gestel, J. & Weissing, F. J. Is plasticity caused by single genes?. Nature 555, E19–E20 (2018). DOI: 10.1038/nature25495
van Gestel, J. & Weissing, F. J. Regulatory mechanisms link phenotypic plasticity to evolvability. Sci. Rep. 6, 24524 (2016). DOI: 10.1038/srep24524
Auld, J. R., Agrawal, A. A. & Relyea, R. A. Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proc. R. Soc. B Biol. Sci. 277, 503–511 (2010). DOI: 10.1098/rspb.2009.1355
Bates, D., Mächler, M., Bolker, B., & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Statical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01. (2015).