[en] Phenotypic variation is the raw material for selection that is ubiquitous for most traits in natural populations, yet the processes underlying phenotypic evolution or stasis often remain unclear. Here, we report phenotypic evolution in a mutant line of the butterfly Bicyclus anynana after outcrossing with the genetically polymorphic wild type population. The comet mutation modifies two phenotypic traits known to be under sexual selection in this butterfly: the dorsal forewing eyespots and the pheromoneproducing structures. The original comet mutant line was inbred and remained phenotypically stable for at least seven years, but when outcrossed to the wild type population the outcrossed comet line surprisingly recovered the wild type phenotype within 8 generations at high (27 °C), but not at low (20 °C), developmental temperatures. Male mating success experiments then revealed that outcrossed comet males with the typical comet phenotype suffered from lower mating success, while mating success of outcrossed comet males resembling wild types was partially restored. We document a fortuitous case where the addition of genetic polymorphism around a spontaneous mutation could have allowed partial restoration of phenotypic robustness. We further argue that sexual selection through mate choice is likely the driving force leading to phenotypic robustness in our system.
Disciplines :
Zoology
Author, co-author :
Nieberding, Caroline ; Evolutionary Ecology and Genetics group, Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain, Belgium
San Martin, Gilles; UCLouvain
Saenko, Suzanne; Evolutionary Biology Group, Institute of Biology, Leiden University, Leiden, The Netherlands
Allen, Cerisse; Evolutionary Biology Group, Institute of Biology, Leiden University, Leiden, The Netherlands ; Division of Biological Sciences, University of Montana, Missoula, USA
Brakefield, Paul; Evolutionary Biology Group, Institute of Biology, Leiden University, Leiden, The Netherlands ; Department of Zoology, University Museum of Zoology Cambridge, University of Cambridge, Cambridge, United Kingdom
Visser, Bertanne ; Université de Liège - ULiège > Département GxABT > Gestion durable des bio-agresseurs
Language :
English
Title :
Sexual selection contributes to partial restoration of phenotypic robustness in a butterfly
Masel, J. & Siegal, M. L. Robustness: mechanisms and consequences. Trends Genet. 25, 395–403 (2009)
Masel, J. & Trotter, M. V. Robustness and evolvability. Trends Genet. 26, 406–414 (2010)
Waddington, C. H. Canalization of development and the inheritance of acquired characters. Nature 150, 563–565 (1942)
Waddington, C. H. The strategy of the genes. (Allen and Unwin, 1957)
Félix, M.-A. & Barkoulas, M. Pervasive robustness in biological systems. Nat. Rev. Genet. 16, 483–496 (2015)
Meiklejohn, C. D. & Hartl, D. L. A single mode of canalization. Trends Ecol. Evol. 17, 468–473 (2002)
Wagner, G. P., Booth, G. & Bagheri-Chaichian, H. A population genetic theory of canalization. Evolution (N. Y). 51, 329–347 (1997)
Lauring, A. S., Frydman, J. & Andino, R. The role of mutational robustness in RNA virus evolution. Nat. Rev. Microbiol. 11, 327–336 (2013)
Siegal, M. L. & Leu, J. On the nature and evolutionary impact of phenotypic robustness mechanisms. Annu. Rev. Ecol. Evol. Syst. 45, 495–517 (2014)
Flatt, T. The evolutionary genetics of canalization. Q. Rev. Biol. 80, 1–1 (2005)
Wilke, C. O., Wang, J. L., Ofria, C., Lenski, R. E. & Adami, C. Evolution of digital organisms at high mutation rates leads to survival of the flattest. Nature 2, 331–333 (2001)
Lande, R. Genetic variation and phenotypic evolution during allopatric speciation. Am. Nat. 116, 463–479 (1980)
Layzer, D. Genetic variation and progressive evolution. Am. Nat. 115, 809–826 (1980)
Rice, S. H. The evolution of canalization and the breaking of Von Baer’s laws: Modeling the evolution of development with epistasis. Evolution (N. Y). 52, 647–656 (1998)
Kawecki, T. J. The evolution of genetic canalization under fluctuating selection. Evolution (N. Y). 54, 1–12 (2000)
Fierst, J. L. Female mating preferences determine system-level evolution in a gene network model. Genetica 141, 157–170 (2013)
Montville, R., Froissart, R., Remold, S. K., Tenaillon, O. & Turner, P. E. Evolution of mutational robustness in an RNA virus. PLoS Biol. 3, 1939–1945 (2005)
Sanjuán, R., Cuevas, J. M., Furió, V., Holmes, E. C. & Moya, A. Selection for robustness in mutagenized RNA viruses. PLoS Genet. 3, 0939–0946 (2007)
McBride, R. C., Ogbunugafor, C. B. & Turner, P. E. Robustness promotes evolvability of thermotolerance in an RNA virus. BMC Evol. Biol. 8, 1–14 (2008)
Brakefield, P. M., Beldade, P. & Zwaan, B. J. The African butterfly Bicyclus anynana: A model for evolutionary genetics and evolutionary developmental biology. Cold Spring Harb. Protoc. 4, 1–10 (2009)
Lyytinen, A., Brakefield, P. M., Lindstrom, L. & Mappes, J. Does predation maintain eyespot plasticity in Bicyclus anynana? Proc. R. Soc. B Biol. Sci. 271, 279–283 (2004)
Costanzo, K. & Monteiro, A. The use of chemical and visual cues in female choice in the butterfly Bicyclus anynana. Proc. R. Soc. B Biol. Sci. 274, 845–851 (2007)
Prudic, K. L., Jeon, C., Cao, H. & Monteiro, A. Developmental plasticity in sexual roles of butterfly species drives mutual sexual ornamentation. Science (80-.). 331, 73–5 (2011)
Robertson, K. A. & Monteiro, A. Female Bicyclus anynana butterflies choose males on the basis of their dorsal UV-reflective eyespot pupils. Proc. R. Soc. B Biol. Sci. 272, 1541–1546 (2005)
Nieberding, C. M. et al. The male sex pheromone of the butterfly Bicyclus anynana: Towards an evolutionary analysis. PLoS One 3, 1–12 (2008)
San Martin, G., Bacquet, P. & Nieberding, C. M. Mate choice and sexual selection in a model butterfly species, Bicyclus anynana: State of the art. Proceedings of Netherlands Entomological Society 22, 9–22 (2011)
Nieberding, C. M. et al. Cracking the olfactory code of a butterfly: The scent of ageing. Ecol. Lett. 15, 415–424 (2012)
van Bergen, E., Brakefield, P. M., Heuskin, S., Zwaan, B. J. & Nieberding, C. M. The scent of inbreeding: a male sex pheromone betrays inbred males. Proc. R. Soc. B Biol. Sci. 280, 20130102–20130102 (2013)
Brakefield, P. M. The evolution–development interface and advances with the eyespot patterns of Bicyclus butterflies. Heredity (Edinb). 80, 265–272 (1998)
Brakefield, P. M. Structure of a character and the evolution of butterfly eyespot patterns. Journal of Experimental Zoology 291, 93–104 (2001)
Beldade, P., Saenko, S. V., Pul, N. & Long, A. D. A gene-based linkage map for Bicyclus anynana butterflies allows for a comprehensive analysis of synteny with the lepidopteran reference genome. PLoS Genet. 5, e1000366 (2009)
Brakefield, P. M. & French, V. Butterfly wings: the evolution of development of colour patterns. BioEssays 21, 391–401 (1999)
Van’t Hof, A. E. et al. Characterization of 28 microsatellite loci for the butterfly Bicyclus anynana. Mol. Ecol. Notes 5, 169–172 (2005)
Bear, A. & Monteiro, A. Male courtship rate plasticity in the butterfly Bicyclus anynana is controlled by temperature experienced during the pupal and adult stages. PLoS One 8, 5–10 (2013)
Kooi, R. E. & Brakefield, P. M. The critical period for wing pattern induction in the polyphenic tropical butterfly Bicyclus anynana (Satyrinae). J. Insect Physiol. 45, 201–212 (1999)
Monteiro, A. Physiology and evolution of wing pattern plasticity in Bicyclus butterflies: A critical review of the literature. In Diversity and Evolution of Butterfly Wing Patterns: An Integrative Approach(eds Sekimura, T. & Nijhout, H. F.) 1–321 10.1007/978-981-10-4956-9 (2017)
Dion, E., Monteiro, A. & Yew, J. Y. Phenotypic plasticity in sex pheromone production in Bicyclus anynana butterflies. Sci. Rep. 6, 1–13 (2016)
Westerman, E. & Monteiro, A. Rearing temperature influences adult response to changes in mating status. PLoS One 11, e0146546 (2016)
Ng, S. Y., Bhardwaj, S. & Monteiro, A. Males become choosier in response to manipulations of female wing ornaments in dry season Bicyclus anynana butterflies. J. Insect Sci. 17, 0–5 (2017)
Koch, P. B., Brakefield, P. M. & Kesbeke, F. Ecdysteroids control eyespot size and wing color pattern in the polyphenic butterfly Bicyclus anynana (Lepidoptera: Satyridae). J. Insect Physiol. 42, 223–230 (1996)
Oostra, V. et al. Translating environmental gradients into discontinuous reaction norms via hormone signalling in a polyphenic butterfly. Proc. R. Soc. B Biol. Sci. 278, 789–797 (2011)
Monteiro, A. et al. Distal-less regulates eyespot patterns and melanization in Bicyclus butterflies. J. Exp. Zool. Part B Mol. Dev. Evol. 320, 321–331 (2013)
Oostra, V., Saastamoinen, M., Zwaan, B. J. & Wheat, C. W. Strong phenotypic plasticity limits potential for evolutionary responses to climate change. Nat. Commun. 9, 1005 (2018)
Cavicchi, S. et al. Developmental effects of modifiers of the vg mutant in Drosophila melanogaster. Dev. Genet. 10, 186–392 (1989)
Waddington, C. H. Genetic assimilation of an acquired character. Evolution (N. Y). 7, 118–126 (1953)
Bloom, J. D., Romero, P. A., Lu, Z. & Arnold, F. H. Neutral genetic drift can alter promiscuous protein functions, potentially aiding functional evolution. Biol. Direct 2, 7–10 (2007)
Rutherford, S. L. & Lindquist, S. Hsp90 as a capacitor for morphological evolution. Nature 396, 336–342 (1998)
Wagner, A. The molecular origins of evolutionary innovations. Trends Genet. 27, 397–410 (2011)
Wagner, A. The role of robustness in phenotypic adaptation and innovation. Proc. R. Soc. B Biol. Sci. 279, 1249–1258 (2012)
Hayden, E. J., Ferrada, E. & Wagner, A. Cryptic genetic variation promotes rapid evolutionary adaptation in an RNA enzyme. Nature 474, 92–95 (2011)
Wade, M. J. Sexual selection and variance in reproductive success. Am. Nat. 114, 742–747 (1979)
Whitlock, M. C. & Agrawal, A. F. Purging the genome with sexual selection: Reducing mutation load through selection on males. Evolution (N. Y). 63, 569–582 (2009)
Sharp, N. P. & Agrawal, A. F. Mating density and the strenght of sexual selection against deleterious alleles in Drosophila melanogaster. Evolution (N. Y). 62, 857–867 (2008)
Sharp, N. P. & Agrawal, A. F. Male-biased fitness effects of spontaneous mutations in Drosophila Melanogaster. Evolution (N. Y). 67, 1189–1195 (2013)
Pischedda, A. & Chippindale, A. Sex, mutation and fitness: Asymmetric costs and routes to recovery through compensatory evolution. J. Evol. Biol. 18, 1115–1122 (2005)
Arbuthnott, D. & Rundle, H. D. Sexual selection is ineffectual or inhibits the purging of deleterious mutations in Drosophila melanogaster. Evolution (N. Y). 66, 2127–2137 (2012)
Westerman, E. L. et al. Biased learning affects mate choice in a butterfly. Proc. Natl. Acad. Sci. 109, 12260.3–12260 (2012)
Joron, M. & Brakefield, P. M. Captivity masks inbreeding effects on male mating success in butterflies. Nature 424, 191–194 (2003)
Morgan, T. H. The theory of the gene. Am. Nat. 51, 513–544 (1917)
Silber, J. Penetrance of the vestigial gene In Drosophila melangoaster. Genetica 54, 91–99 (1980)
Coyne, J. A. & Prout, T. Restoration of mutationally supressed characters in Drosophila melanogaster. Heredity (Edinb). 75, 308–310 (1984)
Pezzoli, C., Laporta, D., Giorgi, G., Guerra, D. & Cavicchi, S. Fitness components in a vestigial mutant strain of Drosophila melanogaster. Ital. J. Zool. 53, 351–354 (1986)
Altenburg, E. & Muller, H. J. The genetic basis of truncate wing - An inconstant and modifiable character in Drosophila. Genetics 5, 1–59 (1920)
Brakefield, P. M., Kesbeke, F. & Koch, P. B. The regulation of phenotypic plasticity of eyespots in the butterfly Bicyclus anynana. Am. Nat. 152, 853–860 (1998)
Bacquet, P. M. B. et al. Selection on male sex pheromone composition contributes to butterfly reproductive isolation. Proc. R. Soc. B Biol. Sci. 282, 20142734 (2015)
R Development Core Team. R: A language and environment for statistical computing (2010)
Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015)
Sokal, R. R. & Rohlf, F. J. Biometry: the principles and practice of statistics in biological research (Freeman, 1995)
Nieberding, C. et al. Partial restoration of mutational robustness after addition of genetic polymorphism and in the presence of sexual selection. BioRxiv, 10.1101/197194 (2017)