De novo synthesis; Arthropods; Essential nutrients; Fatty acids; PUFAs; Desaturase; Ecology, Evolution, Behavior and Systematics
Disciplines :
Zoology
Author, co-author :
Malcicka, Miriama ✱; Department of Ecological Sciences, Section Animal Ecology, Vrije Universiteit, Amsterdam, Amsterdam, De Boelelaan, The Netherlands
Visser, Bertanne ✱; Université de Liège - ULiège > Département GxABT > Gestion durable des bio-agresseurs
Ellers, Jacintha; Department of Ecological Sciences, Section Animal Ecology, Vrije Universiteit, Amsterdam, Amsterdam, De Boelelaan, The Netherlands
✱ These authors have contributed equally to this work.
Language :
English
Title :
An Evolutionary Perspective on Linoleic Acid Synthesis in Animals
Aboshi, T., Shimizu, N., Nakajima, Y., Honda, Y., Kuwahara, Y., Amano, H., & Mori, N. (2013). Biosynthesis of linoleic acid in Tyrophagus mites (Acarina: Acaridae). Insect Biochemistry and Molecular Biology Journal, 43, 991–996.
Alonso, D. L., Garcia-Maroto, F., Rodriguez-Ruiz, J., Garrido, J. A., & Vilches, M. A. (2003). Evolution of the membrane-bound fatty acid desaturases. Biochemical Systematics and Ecology, 31, 1111–1124.
Alonso, J., Schimpl, M., & van Aalten, D. M. (2014). O-GlcNAcase: Promiscuous hexosaminidase or key regulator of O-GlcNAc signaling? The Journal of Biological Chemistry, 289, 34433–34439.
Anderson, G. J., & Connor, W. E. (1989). On the demonstration of ω-3 essential-fatty-acid deficiency in humans. The American Journal of Clinical Nutrition, 49, 585–587.
Belury, M. A. (2002). Dietary conjugated linoleic acid in health: Physiological effects and mechanisms of action 1. Annual Review of Nutrition, 22, 505–531.
Blaul, B., Steinbauer, R., Merkl, P., Merkl, R., Tschochner, H., & Ruther, J. (2014). Oleic acid is a precursor of linoleic acid and the male sex pheromone in Nasonia vitripennis. Insect Biochemistry and Molecular Biology Journal, 51, 33–40.
Blomquist, G. J., Dwyer, L. A., Chu, A. J., Ryan, R. O., & de Renobales, M. (1982). Biosynthesis of linoleic acid in a termite, cockroach and cricket. Insect Biochemistry, 12, 349–353.
Blomquist, G. J., Nelson, D. R., & De Renobales, M. (1987). Chemistry, biochemistry, and physiology of insect cuticular lipids. Archives of Insect Biochemistry and Physiology, 6, 227–265.
Booth-Kewley, S., & Friedman, H. S. (1987). Psychological predictors of heart disease: A quantitative review. Psychological Bulletin, 101, 343.
Borgeson, C. E., Kurtti, T. J., Munderloh, U. G., & Blomquist, G. J. (1991). Insect tissues, not microorganisms, produce linoleic acid in the house cricket and the American cockroach. Experientia, 47, 238–241.
Brandstetter, B., & Ruther, J. (2016). An insect with a delta-12 desaturase, the jewel wasp Nasonia vitripennis, benefits from nutritional supply with linoleic acid. The Science of Nature, 103, 1–4.
Brock, G. R., & Chapple, I. L. (2016). The potential impact of essential nutrients vitamins C and D upon periodontal disease pathogenesis and therapeutic outcomes. Current Oral Health Reports, 3, 337–346.
Browse, J., & Somerville, C. (1991). Glycerolipid synthesis: Biochemistry and regulation. Annual Review of Plant Biology, 42, 467–506.
Buček, A., Matoušková, P., Sychrová, H., Pichová, I., & Hrušková-Heidingsfeldová, O. (2014). ∆12-Fatty acid desaturase from Candida parapsilosis is a multifunctional desaturase producing a range of polyunsaturated and hydroxylated fatty acids. PLoS ONE, 9, e93322.
Büyükgüzel, E. (2012). Eicosanoids mediate cellular immune response and phenoloxidase reaction to viral infection in adult Pimpla turionellae. Archives of Insect Biochemistry and Physiology, 81, 20–33.
Certik, M., & Shimizu, S. (1999). Biosynthesis and regulation of microbial polyunsaturated fatty acid production. Journal of Bioscience and Bioengineering, 87, 1–14.
Chatterjee, I. B. (1973). Evolution and the biosynthesis of ascorbic acid. Science, 182, 1271–1272.
Chodok, P., Eiamsa-ard, P., Cove, D. J., Quatrano, R. S., & Kaewsuwan, S. (2013). Identification and functional characterization of two ∆12-fatty acid desaturases associated with essential linoleic acid biosynthesis in Physcomitrella patens. Journal of Industrial Microbiology & Biotechnology, 40, 901–913.
Chuang, L. T., Leonard, A. E., Liu, J. W., Mukerji, P., Bray, T. M., & Huang, Y. S. (2001). Inhibitory effect of conjugated linoleic acid on linoleic acid elongation in transformed yeast with human elongase. Lipids, 36, 1099–1103.
Covello, P. S., & Reed, D. W. (1996). Functional expression of the extraplastidial Arabidopsis thaliana oleate desaturase gene (FAD2) in Saccharomyces cerevisiae. Plant Physiology, 111, 223–226.
Cripps, C., Blomquist, G. J., & de Renobales, M. (1986). De novo biosynthesis of linoleic acid in insects. Biochimica et Biophysica Acta (BBA: Lipids and Lipid Metabolism, 876, 572–580.)
De Renobales, M., Ryan, R. O., Heisler, C. R., McLean, D. L., & Blomquist, G. J. (1986). Linoleic acid biosynthesis in the pea aphid, Acyrthosiphon pisum (Harris). Archives of Insect Biochemistry and Physiology, 3, 193–203.
De Veth, M. J., Bauman, D. E., Koch, W., Mann, G. E., Pfeiffer, A. M., & Butler, W. R. (2009). Efficacy of conjugated linoleic acid for improving reproduction: A multi-study analysis in early-lactation dairy cows. Journal of Dairy Science, 92, 2662–2669.
Destephano, D. B., & Brady, U. E. (1977). Prostaglandin and prostaglandin synthetase in the cricket, Acheta domesticus. Journal of Insect Physiology, 23, 905–911.
Domenichiello, A. F., Kitson, A. P., Chen, C. T., Trépanier, M. O., Stavro, P. M., & Bazinet, R. P. (2016). The effect of linoleic acid on the whole body synthesis rates of polyunsaturated fatty acids from α-linolenic acid and linoleic acid in free-living rats. The Journal of Nutritional Biochemistry, 30, 167–176.
Douglas, A. E. (1998). Nutritional interactions in insect-microbial symbioses: Aphids and their symbiotic bacteria Buchnera. Annual Review of Entomology, 43, 17–37.
Dwyer, L. A., Blomquist, G. J., Nelson, J. H., & George Pomonis, J. (1981). A sup 13sup C-NMR study of the biosynthesis of 3-methylpentacosane in the American cockroach. Biochimica et Biophysica Acta (BBA): Lipids and Lipid Metabolism, 663, 536–544.
Eder, K., Schleser, S., Becker, K., & Körting, R. (2003). Conjugated linoleic acids lower the release of eicosanoids and nitric oxide from human aortic endothelial cells. The Journal of Nutrition, 133, 4083–4089.
Eleftherianos, I., Atri, J., Accetta, J., & Castillo, J. (2013). Endosymbiotic bacteria in insects: Guardians of the immune system? Frontiers in Physiology 4, 46.
Ellers, J., Kiers, Toby, Currie, E., McDonald, C. R., Visser, B. R., B (2012). Ecological interactions drive evolutionary loss of traits. Ecology Letters, 15, 1071–1082.
El-Yassimi, A., Hichami, A., Besnard, P., & Khan, N. A. (2008). Linoleic acid induces calcium signaling, Src kinase phosphorylation, and neurotransmitter release in mouse CD36-positive gustatory cells. The Journal of Biological Chemistry, 283, 12949–12959.
Farmer, E. E. (1994). Fatty acid signalling in plants and their associated microorganisms. Plant Molecular Biology, 26, 1423–1437.
Fromm, H. J., & Hargrove, M. (2012). Essentials of biochemistry. Berlin: Springer.
Gostinčar, C., Turk, M., Plemenitaš, A., & Gunde-Cimerman, N. (2009). The expressions of ∆9-, ∆12-desaturases and an elongase by the extremely halotolerant black yeast Hortaea werneckii are salt dependent. FEMS Yeast Research, 9, 247–256.
Grosso, G., Micek, A., Marventano, S., Castellano, S., Mistretta, A., Pajak, A., & Galvano, F. (2016). Dietary n-3 PUFA, fish consumption and depression: A systematic review and meta-analysis of observational studies. Journal of Affective Disorders, 205, 269–281.
Harizi, H., & Gualde, N. (2005). The impact of eicosanoids on the crosstalk between innate and adaptive immunity: The key roles of dendritic cells. Tissue Antigens, 65, 507–514.
Hashimoto, K., Yoshizawa, A. C., Okuda, S., Kuma, K., Goto, S., & Kanehisa, M. (2008). The repertoire of desaturases and elongases reveals fatty acid variations in 56 eukaryotic genomes. The Journal of Lipid Research, 49, 183–191.
Hazel, J. R. (1995). Thermal adaptation in biological membranes: Is homeoviscous adaptation the explanation? Annual Review of Physiology, 57, 19–42.
Helliwell, K. E., Wheeler, G. L., & Smith, A. G. (2013). Widespread decay of vitamin-related pathways: Coincidence or consequence? Trends in Genetics: TIG, 29, 469–478.
Horrobin, D. F. (1998). The membrane phospholipid hypothesis as a biochemical basis for the neurodevelopmental concept of schizophrenia. Schizophrenia Research, 30, 193–208.
Hulbert, A. J., Turner, N., Storlien, L. H., & Else, P. L. (2005). Dietary fats and membrane function: Implications for metabolism and disease. Biological Review, 80, 155–169.
Iskandarov, U., Khozin-Goldberg, I., & Cohen, Z. (2010). Identification and characterization of ∆12, ∆6, and ∆5 desaturases from the green microalga Parietochloris incisa. Lipids, 45, 519–530.
Jenkins, N. D., Buckner, S. L., Baker, R. B., Bergstrom, H. C., Cochrane, K. C., Weir, J. P., … Cramer, J. T. (2014). Effects of 6 weeks of aerobic exercise combined with conjugated linoleic acid on the physical working capacity at fatigue threshold. The Journal of Strength & Conditioning Research, 28, 2127–2135.
Jurenka, R. A., de Renobales, M., & Blomquist, G. J. (1987). De novo biosynthesis of polyunsaturated fatty acids in the cockroach Periplaneta americana. Archives of Biochemistry and Biophysics, 255, 184–193.
Kainou, K., Kamisaka, Y., Kimura, K., & Uemura, H. (2006). Isolation of ∆12 and ω3-fatty acid desaturase genes from the yeast Kluyveromyces lactis and their heterologous expression to produce linoleic and α-linolenic acids in Saccharomyces cerevisiae. Yeast (Chichester, England), 23, 605–612.
Kalmijn, S., Feskens, E. J. M., Launer, L. J., & Kromhout, D. (1997). Polyunsaturated fatty acids, antioxidants, and cognitive function in very old men. American Journal of Epidemiology, 145, 33–41.
Kaye, Y., Grundman, O., Leu, S., Zarka, A., Zorin, B., Didi-Cohen, S., Khozin-Goldberg, I., & Boussiba, S. (2015). Metabolic engineering toward enhanced LC-PUFA biosynthesis in Nannochloropsis oceanica: Overexpression of endogenous ∆12 desaturase driven by stress-inducible promoter leads to enhanced deposition of polyunsaturated fatty acids in TAG. Algal Research, 11, 387–398.
Kennedy, D. O. (2016). B vitamins and the brain: Mechanisms, dose and efficacy—A review. Nutrients, 8, 68.
Kuwahara, Y. (2004). Chemical ecology of astigmatid mites. Advance Insect Chemical Ecology, 65, 76–109.
Los, D. A., & Murata, N. N (1998). Structure and expression of fatty acid desaturases. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 1394, 3–15.
Louloudes, S. J., Kaplanis, J. N., Robbins, W. E., & Monroe, R. E. (1961). Lipogenesis from C14-acetate by the American cockroach. Annals of the Entomological Society of America, 54, 99–103.
Lu, Y., Chi, X., Yang, Q., Li, Z., Liu, S., Gan, Q., & Qin, S. 2009. Molecular cloning and stress-dependent expression of a gene encoding ∆12-fatty acid desaturase in the Antarctic microalga Chlorella vulgaris NJ-7. Extremophiles, 13, 875–884.
Macartney, A., Maresca, B., & Cossins, A. R. (1994). Acyl-CoA desaturases and the adaptive regulation of membrane lipid composition. Temperature adaptation of biological membranes. London: Portland Press.
Malcicka, M., Ruther, J., & Ellers, J. (2017). De novo synthesis of linoleic acid in multiple Collembola species. Journal of Chemical Ecology, 9, 911–919.
Mauldin, J. K., Rich, N. M., & Cook, D. W. (1978). Amino acid synthesis from 14C-acetate by normally and abnormally faunated termites, Coptotermes formosanus. Insect Biochemistry, 8, 105–109.
Mauldin, J. K., Smythe, R. V., & Baxter, C. C. (1972). Cellulose catabolism and lipid synthesis by the subterranean termite, Coptotermes formosanus. Insect Biochemisty, 2, 209–217.
Millar, J. G. (2000). Polyene hydrocarbons and epoxides: A second major class of lepidopteran sex attractant pheromones. Annual Review of Entomology, 45, 575–604.
Murata, N., & Wada, H. (1995). Acyl-lipid desaturases and their importance in the tolerance and acclimatization to cold of cyanobacteria. The Biochemical Journal, 308, 1–6.
Nugteren, D. H., Van Evert, W. C., Soeting, W. J., & Spuy, J. H. (1979). Effect of different amounts of linoleic acid in the diet on the excretion of urinary prostaglandin metabolites in the rat. Advances in Prostaglandin and Thromboxane Research, 8, 1793–1796.
Ohta, Y., & Nishikimi, M. (1999). Random nucleotide substitutions in primate nonfunctional gene for l-gulono-γ-lactone oxidase, the missing enzyme in l-ascorbic acid biosynthesis. Biochimica et Biophysica Acta (BBA): General Subjects, 1472, 408–411.
Oliver, K. M., Degnan, P. H., Burke, G. R., & Moran, N. A. (2010). Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annual Review of Entomology, 55, 247–266.
Palmquist, D. L., Lock, A. L., Shingfield, K. J., & Bauman, D. E. (2005). Biosynthesis of conjugated linoleic acid in ruminants and humans. Advances in Food and Nutrition Research, 50, 179–217.
Pandey, V. C., Prakash, P., Bajpai, O., Kumar, A., & Singh, N. (2015). Phytodiversity on fly ash deposits: Evaluation of naturally colonized species for sustainable phytorestoration. Environmental Science and Pollution Research, 22, 2776–2787.
Park, W. B., Kim, N. H., Kim, K. H., Lee, S. H., Nam, W. S., Yoon, S. H., Song, K. H., Choe, P. G., Kim, N. J., Jang, I. J., & Oh, M. D. (2012). The effect of therapeutic drug monitoring on safety and efficacy of voriconazole in invasive fungal infections: A randomized controlled trial. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 55, 1080–1087.
Peyou-Ndi, M. M., Watts, J. L., & Browse, J. (2000). Identification and characterization of an animal ∆ 12 fatty acid desaturase gene by heterologous expression in Saccharomyces cerevisiae. Archives of Biochemistry and Biophysics, 376, 399–408.
Qi, B., Fraser, T., Mugford, S., Dobson, G., Sayanova, O., Butler, J., … Lazarus, C. M. (2004). Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nature Biotechnology, 22, 739–745.
Rong, J., Liu, N. Y., Yan, L., & Dong, S. L. (2015). A larval specific OBP able to bind the major female sex pheromone component in Spodoptera exigua (Hübner). Journal of Integrative Agriculture, 14, 1356–1366.
Rule, G. S., & Roelofs, W. L. (1989). Biosynthesis of sex pheromone components from linolenic acid in arctiid moths. Archives of Insect Biochemistry and Physiology, 12, 89–97.
Sampath, H., & Ntambi, J. M. (2005). Polyunsaturated fatty acid regulation of genes of lipid metabolism. Annual Review of Nutrition, 25, 317–340.
Shimizu, N., Naito, M., Mori, N., & Kuwahara, Y. (2014). De novo biosynthesis of linoleic acid and its conversion to the hydrocarbon (Z, Z)-6, 9-heptadecadiene in the astigmatid mite, Carpoglyphus lactis: Incorporation experiments with 13C-labeled glucose. Insect Biochemistry and Molecular Biology, 45, 51–57.
Sinclair, A. J., Begg, D., Mathai, M., & Weisinger, R. S. (2007). Omega 3 fatty acids and the brain: Review of studies in depression. Asia Pacific Journal of Clinical Nutrition, 16, 391–397.
Stanley, D. (2006). Prostaglandins and other eicosanoids in insects: Biological significance. Annual Review of Entomology, 51, 25–44.
Stanley, W. C., Khairallah, R. J., & Dabkowski, E. R. (2012). Update on lipids and mitochondrial function: Impact of dietary n-3 polyunsaturated fatty acids. Current Opinion in Clinical Nutrition and Metabolic Care, 15, 122.
Stanley-Samuelson, D. W., Jensen, E., Nickerson, K. W., Tiebel, K., Ogg, C. L., & Howard, R. W. (1991). Insect immune response to bacterial infection is mediated by eicosanoids. Proceedings of the National Academy of Sciences, 88, 1064–1068.
Stanley-Samuelson, D. W., Loher, W., & Blomquist, G. J. (1986a). Biosynthesis of polyunsaturated fatty acids by the Australian field cricket, Teleogryllus commodus. Insect Biochemistry, 16, 387–393.
Stanley-Samuelson, D. W., Peloquin, J. J., & Loher, W. (1986b). Egg-laying in response to prostaglandin injections in the Australian field cricket, Teleogryllus commodus. Physiological Entomology, 11, 213–219.
Thelen, J. J., & Ohlrogge, J. B. (2002). Metabolic engineering of fatty acid biosynthesis in plants. Metabolic Engineering, 4, 12–21.
Vanderwel, D., & Oehlschlager, A. C. (1987). Biosynthesis of pheromones and endocrine regulation of pheromone production in Coleoptera. In Pheromone biochemistry. New York: Academic Press.
Visser, B., & Ellers, J. (2008). Lack of lipogenesis in parasitoids: A review of physiological mechanisms and evolutionary implications. Journal of Insect Physiology, 54, 1315–1322.
Visser, B., Le Lann, C., den Blanken, F. J., Harvey, J. A., van Alphen, J. J., & Ellers, J. (2010). Loss of lipid synthesis as an evolutionary consequence of a parasitic lifestyle. Proceedings of the National Academy of Sciences, 107, 8677–8682.
Wallis, J. G., Watts, J. L., & Browse, J. (2002). Polyunsaturated fatty acid synthesis: What will they think of next? Trends in Biochemical Sciences, 27, 467–473.
Watts, J., & Browse, L. J. (2002). Genetic dissection of polyunsaturated fatty acid synthesis in Caenorhabditis elegans. Proceedings of the National Academy of Sciences, 99, 5854–5859.
Weber, H. (2002). Fatty acid-derived signals in plants. Trends in Plant Science, 7, 217–224.
Weinert, J., Blomquist, G. J., & Borgeson, C. E. (1993). De novo biosynthesis of linoleic acid in two non-insect invertebrates: The land slug and the garden snail. Experientia, 49, 919–921.
Wharton, D. R. A., & Lola, J. E. (1970). Blood conditions and lysozyme action in the aposymbiotic cockroach. Journal of Insect Physiology, 16, 199–209.
Yamaja Setty, B. N., & Ramaiah, T. R. (1979). Isolation and identification of prostaglandins from the reproductive organs of male silkmoth, Bombyx mori L. Insect Biochemistry, 9, 613–617.
Yan, Z., Zhuo, L., Mulan, J., Xia, W., Yangmin, G., Yinbo, Z., & Fenghong, H. (2013). Clone and identification of bifunctional ∆12/∆15 fatty acid desaturase LKFAD15 from Lipomyces kononenkoae. Food Science and Biotechnology, 22, 573–576.
Zhou, X. R., Horne, I., Damcevski, K., Haritos, V., Green, A., & Singh, S. (2008). Isolation and functional characterization of two independently-evolved fatty acid ∆12-desaturase genes from insects. Insect Molecular Biology, 17, 667–676.
Zhou, X.-R., Green, A. G., & Singh, S. P. (2011). Caenorhabditis elegans ∆12-desaturase FAT-2 is a bifunctional desaturase able to desaturate a diverse range of fatty acid substrates at the ∆12 and ∆15 positions. The Journal of Biological Chemistry, 286, 43644–43650.