hydrothermal vent; deep sea; benthic invertebrates; stable isotopes; food webs; back arc basins; chimiosynthesis; symbiosis; community ecology; larval dispersal
Abstract :
[en] Here we report the discovery of a high-temperature hydrothermal vent field on the Woodlark Ridge, using ship-born multibeam echosounding and Remotely Operated Vehicle (ROV) exploration. La Scala Vent Field comprises two main active areas and several inactive zones dominated by variably altered basaltic rocks, indicating that an active and stable hydrothermal circulation has been maintained over a long period of time. The Pandora Site, at a depth of 3,380 m, is mainly composed of diffuse vents. The Corto site, at a depth of 3,360 m, is characterized by vigorous black smokers (temperature above 360°C). The striking features of this new vent field are the profusion of stalked barnacles Vulcanolepas sp. nov., the absence of mussels and the scarcity of the gastropod symbiotic fauna. We suggest that La Scala Vent Field may act as a dispersing centre 37 for hydrothermal fauna towards the nearby North Fiji, Lau and Manus basins.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège MARE - Centre Interfacultaire de Recherches en Océanologie - ULiège
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
German, C. R. Von Damm, K. L. Treatise on Geochemistry (eds Heinrich, D. H. & Karl, K. T.) 181–222 (Pergamon, 2003).
Van Dover, C. The Ecology of Deep-Sea Hydrothermal Vents (Princeton University Press, 2000).
Spiess, F. N. et al. East Pacific rise: Hot springs and geophysical experiments. Science 207, 1421–1433 (1980).
Haymon, R. M. et al. Hydrothermal vent distribution along the East Pacific Rise crest 9° 09’–54’ N and its relationship to magmatic and tectonic processes on fast-spreading mid-ocean ridges. Earth Planetary Sci. Lett. 104, 513–534 (1991).
Edmonds, H. N. et al. Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel Ridge in the Arctic Ocean. Nature 421, 252–256 (2003).
German, C. R. et al. Hydrothermal activity and seismicity at Teahitia Seamount: Reactivation of the society islands hotspot? Front. Mar. Sci 7, 73 (2020).
de Ronde, C. E. J. et al. Intra-oceanic subduction-related hydrothermal venting, Kermadec volcanic arc, New Zealand. Earth Planetary Sci. Lett. 193, 359–369 (2001).
Ishibashi, J. & Urabe, T. Backarc Basins: Tectonics and Magmatism (ed Taylor, B.) 451–495 (Springer, 1995).
Fouquet, Y. et al. Hydrothermal activity and metallogenesis in the Lau back-arc basin. Nature 349, 778–781 (1991).
Boschen, R. E., Rowden, A. A., Clark, M. R. & Gardner, J. P. A. Mining of deep-sea seafloor massive sulfides: A review of the deposits, their benthic communities, impacts from mining, regulatory frameworks, and management strategies. Ocean Coastal Manage. 84, 54–67 (2013).
Lisitsyn, A. P. et al. Active hydrothermal activity at Franklin Seamount, Western Woodlark Sea (Papua New Guinea). Int. Geol. Rev. 33, 914–929 (1991).
Laurila, T. E. et al. Tectonic and magmatic controls on hydrothermal activity in the Woodlark Basin: Hydrothermalism in the Woodlark Basin. Geochem. Geophys. Geosyst. 13, Q09006 (2012).
Goodliffe, A. M. et al. Synchronous reorientation of the Woodlark Basin spreading center. Earth Planetary Sci. Lett. 146, 233–242 (1997).
Martínez, F., Taylor, B. & Goodliffe, A. M. Contrasting styles of seafloor spreading in the Woodlark Basin: Indications of rift-induced secondary mantle convection. J. Geophys. Res. 104, 12909–12926 (1999).
Taylor, B., Goodliffe, A., Martinez, F. & Hey, R. Continental rifting and initial sea-floor spreading in the Woodlark Basin. Nature 374, 534–537 (1995).
Schellart, W. P., Lister, G. S. & Toy, V. G. A Late Cretaceous and Cenozoic reconstruction of the Southwest Pacific region: Tectonics controlled by subduction and slab rollback processes. Earth-Sci. Rev. 76, 191–233 (2006).
Hall, R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations. J. Asian Earth Sci. 20, 353–431 (2002).
Breusing, C. et al. Allopatric and sympatric drivers of speciation in Alviniconcha hydrothermal vent snails. Mol. Biol. Evol. 37, 3469–3484 (2020).
Ondréas, H., Scalabrin, C., Fouquet, Y. & Godfroy, A. Recent high-resolution mapping of Guaymas hydrothermal fields (Southern Trough). BSGF - Earth Sci. Bull. 189, 6 (2018).
Nakamura, K. et al. Water column imaging with multibeam echo-sounding in the mid-Okinawa Trough: Implications for distribution of deep-sea hydrothermal vent sites and the cause of acoustic water column anomaly. Geochem. J. 49, 579–596 (2015).
Xu, G., Jackson, D. R. & Bemis, K. G. The relative effect of particles and turbulence on acoustic scattering from deep sea hydrothermal vent plumes revisited. J. Acoust. Soc. Am. 141, 1446–1458 (2017).
Park, S.-H. et al. Petrogenesis of basalts along the eastern Woodlark spreading center, equatorial western Pacific. Lithos 316–317, 122–136 (2018).
Chadwick, J. et al. Arc lavas on both sides of a trench: Slab window effects at the Solomon Islands triple junction, SW Pacific. Earth Planetary Sci. Lett. 279, 293–302 (2009).
Fouquet, Y. et al. Geodiversity of Hydrothermal Processes Along the Mid-Atlantic Ridge and Ultramafic-Hosted Mineralization: A New Type of Oceanic Cu-Zn-Co-Au Volcanogenic Massive Sulfide Deposit (eds Rona, P. A., Devey, C. W., Dyment, J. & Murton, B. J.) Vol. 188, 321–367 (American Geophysical Union, 2010).
Von Damm, K. et al. Chemistry of submarine hydrothermal solutions at 21N, East Pacific Rise. Geochim. Cosmochim. Acta 49, 2197–2220 (1985).
Seyfried, W. E. & Bischoff, J. L. Experimental seawater-basalt interaction at 300 °C, 500 bars, chemical exchange, secondary mineral formation and implications for the transport of heavy metals. Geochim. Cosmochim. Acta 45, 135–147 (1981).
Pester, N. J., Rough, M., Ding, K. & Seyfried, W. E. A new Fe/Mn geothermometer for hydrothermal systems: Implications for high-salinity fluids at 13°N on the East Pacific Rise. Geochim. Cosmochim. Acta https://doi.org/10.1016/j.gca.2011.08.043 (2011).
Podowski, E. L., Moore, T. S., Zelnio, K. A., Luther, G. W. & Fisher, C. R. Distribution of diffuse flow megafauna in two sites on the Eastern Lau Spreading Center, Tonga. Deep Sea Res. Part I: Oceanogr. Res. Papers 56, 2041–2056 (2009).
Collins, P., Kennedy, R. & Van Dover, C. A biological survey method applied to seafloor massive sulphides (SMS) with contagiously distributed hydrothermal-vent fauna. Mar. Ecol. Prog. Ser. 452, 89–107 (2012).
Desbruyères, D., Hashimoto, J. & Fabri, M.-C. Composition and biogeography of hydrothermal vent communities in Western Pacific back-arc basins. Geophys. Monogr. Ser. 166, 215–234 (2006).
Reid, W. D. K. et al. Spatial differences in East scotia ridge hydrothermal vent food webs: Influences of chemistry, microbiology, and predation on trophodynamics. PLoS One 8, e65553 (2013).
Van Audenhaege, L., Fariñas-Bermejo, A., Schultz, T. & Lee Van Dover, C. An environmental baseline for food webs at deep-sea hydrothermal vents in Manus Basin (Papua New Guinea). Deep Sea Res. Part I: Oceanogr. Res. Papers https://doi.org/10.1016/j.dsr.2019.04.018 (2019).
Erickson, K. L., Macko, S. A. & Van Dover, C. L. Evidence for a chemoautotrophically based food web at inactive hydrothermal vents (Manus Basin). Deep-Sea Res. Part II: Top. Stud. Oceanogr. 56, 1577–1585 (2009).
Comeault, A., Stevens, C. J. & Juniper, S. K. Mixed photosynthetic-chemosynthetic diets in vent obligate macroinvertebrates at shallow hydrothermal vents on Volcano 1, South Tonga Arc—evidence from stable isotope and fatty acid analyses. Cahiers de Biologie Marine 51, 351–359 (2010).
Bennett, S. A., Dover, C. V., Breier, J. A. & Coleman, M. Effect of depth and vent fluid composition on the carbon sources at two neighboring deep-sea hydrothermal vent fields (Mid-Cayman Rise). Deep-Sea Res. Part I: Oceanogr. Res. Papers 104, 122–133 (2015).
Levin, L. A. et al. Hydrothermal vents and methane seeps: Rethinking the sphere of influence. Front. Marine Sci. 3, 1–23 (2016).
Hügler, M. & Sievert, S. M. Beyond the Calvin cycle: Autotrophic carbon fixation in the ocean. Annu. Rev. Mar. Sci. 3, 261–289 (2011).
Wang, X., Li, C., Wang, M. & Zheng, P. Stable isotope signatures and nutritional sources of some dominant species from the PACManus hydrothermal area and the Desmos caldera. PLoS One 13, e0208887 (2018).
Tunnicliffe, V. & Southward, A. J. Growth and breeding of a primitive stalked barnacle Leucolepas longa (Cirripedia: Scalpellomorpha: Eolepadidae: Neolepadinae) inhabiting a volcanic seamount off Papua New Guinea. J. Mar. Biol. Ass. 84, 121–132 (2004).
Auzende, J. M., Pelletier, B. & Lafoy, Y. Twin active spreading ridges in the North Fiji Basin (southwest Pacific). Geology 22, 63–66 (1994).
Parson, L. M. & Wright, I. C. The Lau-Havre-Taupo back-arc basin: A southward-propagating, multi-stage evolution from rifting to spreading. Tectonophysics 263, 1–22 (1996).
Thaler, A. D. et al. Comparative population structure of two deep-sea hydrothermal-vent-associated decapods (Chorocaris sp. 2 and Munidopsis lauensis) from Southwestern Pacific back-arc basins. PLoS One 9, e101345 (2014).
Lee, W.-K., Kim, S.-J., Hou, B. K., Van Dover, C. L. & Ju, S.-J. Population genetic differentiation of the hydrothermal vent crab Austinograea alayseae (Crustacea: Bythograeidae) in the Southwest Pacific Ocean. PLoS One 14, e0215829 (2019).
Plouviez, S. et al. Amplicon sequencing of 42 nuclear loci supports directional gene flow between South Pacific populations of a hydrothermal vent limpet. Ecol. Evol. 10.1002/ece3.5235 (2019).
Tran Lu Y, A. et al. Fine-scale genomic patterns of connectivity in the deep sea hydrothermal gastropod Ifremeria nautilei over its species range using outlier scans and demo-genetic inferences. Mol. Ecol. (In Revision).
Yearsley, J. M. & Sigwart, J. D. Larval transport modeling of deep-sea invertebrates can aid the search for undiscovered populations. PLoS One 6, e23063 (2011).
Mitarai, S., Watanabe, H., Nakajima, Y., Shchepetkin, A. F. & McWilliams, J. C. Quantifying dispersal from hydrothermal vent fields in the western Pacific Ocean. Proc. Natl Acad. Sci. USA 113, 2976–2981 (2016).
Marsh, L. et al. Microdistribution of faunal assemblages at deep-sea hydrothermal vents in the southern ocean. PLoS One 7, e48348 (2012).
Jollivet, D. et al. The Biospeedo cruise: A new survey of hydrothermal vents along the south East Pacific Rise from 7°24’ S to 21°33’ S. InterRidge News 13, 20–26 (2005).
Girard, F. et al. Currents and topography drive assemblage distribution on an active hydrothermal edifice. Prog. Oceanogr. 187, 102397 (2020).
Hessler, R. R. & Lonsdale, P. F. Biogeography of Mariana Trough hydrothermal vent communities. Deep Sea Res. Part A. Oceanogr. Res. Papers 38, 185–199 (1991).
Fujikura, K. Biology and earth scientific investigation by the submersible ‘Shinkai 6500’ system of deep-sea hydrothermal and lithosphere in the Mariana back-arc basin. JAMSTEC J. Deep Sea Res. 13, 1–20 (1997).
Connelly, D. P. et al. Hydrothermal vent fields and chemosynthetic biota on the world’s deepest seafloor spreading centre. Nat. Commun. 3, 620 (2012).
Cline, J. D. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol. Oceanogr. 14, 454–458 (1969).
Craddock, P. R., Rouxel, O. J., Ball, L. A. & Bach, W. Sulfur isotope measurement of sulfate and sulfide by high-resolution MC-ICP-MS. Chem. Geol. 253, 102–113 (2008).
Mateo, M. A., Serrano, O., Serrano, L. & Michener, R. H. Effects of sample preparation on stable isotope ratios of carbon and nitrogen in marine invertebrates: Implications for food web studies using stable isotopes. Oecologia 157, 105–115 (2008).
Hedges, J. I. & Stern, J. H. Carbon and nitrogen determinations of carbonate-containing solids1. Limnol. Oceanogr. 29, 657–663 (1984).
Coplen, T. B. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results: Guidelines and recommended terms for expressing stable isotope results. Rapid Commun. Mass Spectrom. 25, 2538–2560 (2011).
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).
Methou, P., Michel, L. N., Segonzac, M., Cambon-Bonavita, M.-A. & Pradillon, F. Integrative taxonomy revisits the ontogeny and trophic niches of Rimicaris vent shrimps. R. Soc. Open Sci. 7, 200837 (2020).
Leigh, J. W. & Bryant, D. Popart: Full‐feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.