chemical sensors; Electronic packaging thermal management; electronic packaging thermal management; Electronics packaging; Gas detectors; Heating systems; microassembly; microsensors; Packaging; Power demand; Sensors; Temperature sensors; Electronic Packaging; Electronic packaging thermal managements; Heating system; Low thermal conductivity; Low-costs; Metal oxide sensors; Metal-oxides gas sensors; Microassemblies; Power demands; Computer Science (all); Materials Science (all); Engineering (all); General Engineering; General Materials Science; General Computer Science
Abstract :
[en] Metal-oxide (MOX) gas sensors commonly rely on custom packaging solution. With an ever-increasing demand for MOX gas sensors, there is a clear need for a low cost, compact and high-performance package. During normal operation, MOX sensors are heated up to a temperature in the typical range of 200-300°C. However, the generated heat must not damage or degrade any other part of the assembly. Using 3D finite elements modelling, we developed an optimal package configuration. To thermally insulate the assembly from the heated MOX sensor we have developed in-house a low thermal conductivity xerogel-epoxy composite with 22.7% by weight xerogel and a thermal conductivity of 107.9 mW m-1 K-1 which is a reduction exceeding 30% compared to commercially available epoxy. Based on the low thermal conductivity xerogel-epoxy composite, we have developed a novel packaging approach that can suit the large family of MOX sensors. The developed alternative packaging solution includes a small number of assembly steps and uses standard processes and techniques. The assembled MOX sensor is low cost and has a low power consumption, while all thermally sensitive assembly parts remain at low temperature during the system’s lifetime.
Research Center/Unit :
Montefiore Institute - Montefiore Institute of Electrical Engineering and Computer Science - ULiège
Disciplines :
Electrical & electronics engineering
Author, co-author :
Stoukatch, Serguei ; Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
Fagnard, Jean-François ; Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
Dupont, François ; Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
Laurent, Philippe ; Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
Debliquy, Marc
Redouté, Jean-Michel ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Systèmes microélectroniques intégrés
Language :
English
Title :
Low Thermal Conductivity Adhesive as a Key Enabler for Compact, Low-Cost Packaging for Metal-Oxide Gas Sensors
Publication date :
26 February 2022
Journal title :
IEEE Access
ISSN :
2169-3536
Publisher :
Institute of Electrical and Electronics Engineers Inc.
Microsystème_ULg Microsys Project funded by Wallonia, Belgium; and in part by the MicroCProject co-funded by the European Regional Development Fund (ERDF), Wallonia, Belgium, under Grant 675781-642409.
Funders :
Microsystème_ULg Microsys Project funded by Wallonia, Belgium Micro+Project European Regional Development Fund (ERDF), Wallonia, Belgium
Funding number :
Grant 675781-642409
Funding text :
Microsystème_ULg Microsys Project funded by Wallonia, Belgium; and in part by the MicroCProject co-funded by the European Regional Development Fund (ERDF), Wallonia, Belgium, under Grant 675781-642409.
S. Nietic, P. Dolic, D. Lopez-de-Ipina Gonzalez-de-Artaza, and L. Patrono,Internet of Things (IoT): Opportunities, issues and challenges towards a smart and sustainable future J. Cleaner Prod., vol. 274, Nov. 2020, Art. no. 122877, doi: 10.1016/j.jclepro.2020.122877.
T. Wasilewski and J. Gebicki,Emerging strategies for enhancing detection of explosives by artificial olfaction Microchem. J., vol. 164, May 2021, Art. no. 106025, doi: 10.1016/j.microc.2021.106025.
E. P. Olle, J. Farre-Llados, and J. Casals-Terre,Advancements in microfabricated gas sensors and microanalytical tools for the sensitive and selective detection of odors Sensors, vol. 20, no. 19, p. 5478, Sep. 2020, doi: 10.3390/s20195478.
H. Liu, L. Zhang, K. Li, and O. Tan,Microhotplates for metal oxide semiconductor gas sensor applications Towards the CMOS-MEMS monolithic approach Micromachines, vol. 9, no. 11, p. 557, Oct. 2018, doi: 10.3390/mi9110557.
L. Xu, Z. Dai, G. Duan, L. Guo, Y. Wang, H. Zhou, Y. Liu, W. Cai, Y. Wang, and T. Li,Micro/nano gas sensors: A new strategy towards in-situ wafer-level fabrication of high-performance gas sensing chips Sci. Rep., vol. 5, p. 10507, May 2015, doi: 10.1038/srep10507.
T. Blank, I. Brouk, S. Bar-Lev, G. Amar, E. Meimoun, M. Meltsin, S. Bouscher, M. Vaiana, A. Maierna, M. E. Castagna, G. Bruno, and Y. Nemirovsky,Non-imaging digital CMOS-SOI-MEMS uncooled passive infra-red sensing systems IEEE Sensors J., vol. 21, no. 3, pp. 3660-3669, Sep. 2020, doi: 10.1109/JSEN.2020.3022095.
D. Briand, L. Guillot, S. Raible, J. Kappler, and N. F. de Rooij,Highly integrated wafer level packaged MOX gas sensors in Proc. Int. Solid-State Sensors, Actuat. Microsystems Conf., Jun. 2007, pp. 2401-2404, doi: 10.1109/SENSOR.2007.4300654.
L. Kulhari, K. Ray, N. Suri, and P. K. Khanna,Detection and characterization of CO gas using LTCC micro-hotplates Sadhana, vol. 45, no. 1, pp. 1-6, Dec. 2020, doi: 10.1007/s12046-020-1316-5.
N. N. Samotaev, K. Y. Oblov, and A. V. Ivanova,P1SM.8-Technology of rapid prototyping SMD MOX gas sensors in Proc. IMCS, 2018, pp. 653-654, doi: 10.5162/imcs2018/p1sm.8.
D. Briand, S. Colin, J. Courbat, S. Raible, J. Kappler, and N. Derooij,Integration of MOX gas sensors on polyimide hotplates Sens. Actuators B, Chem., vol. 130, no. 1, pp. 430-435, Mar. 2008, doi: 10.1016/j.snb.2007.09.013.
A. Hierlemann, Integrated Chemical Microsensor Systems in CMOS Tech-nology. Berlin, Germany: Springer, 2006.
B. B. Kim and W. Park,MEMS packaging in Encyclopedia Nanotech-nology, B. Bhushan, Ed. Dordrecht, The Netherlands: Springer, 2012, doi: 10.1007/978-90-481-9751-4-319.
M. Graf, A. Gurlo, N. Bârsan, U. Weimar, and A. Hierlemann,Microfabricated gas sensor systems with sensitive nanocrystalline metal-oxide films J. Nanoparticle Res., vol. 8, no. 6, pp. 823-839, Dec. 2006, doi: 10.1007/s11051-005-9036-7.
R. Prajesh, N. Jain, and A. Agarwal,Low cost packaging for gas sensors Microsyst. Technol., vol. 21, no. 10, pp. 2265-2269, Oct. 2015. Accessed: Jan. 20, 2022, doi: 10.1007/s00542-014-2374-6.
Y. Luo, C. Zhang, B. Zheng, X. Geng, and M. Debliquy,Hydrogen sensors based on noble metal doped metal-oxide semiconductor: A review Int. J. Hydrogen Energy, vol. 42, no. 31, pp. 20386-20397, 2017, doi: 10.1016/j.ijhydene.2017.06.066.
Y. Luo, A. Ly, D. Lahem, C. Zhang, and M. Debliquy,A novel lowconcentration isopropanol gas sensor based on fe-doped ZnO nanoneedles and its gas sensing mechanism J. Mater. Sci., vol. 56, no. 4, pp. 3230-3245, Feb. 2021, doi: 10.1007/s10853-020-05453-1.
C. Zhang, G. Liu, X. Geng, K. Wu, and M. Debliquy,Metal oxide semiconductors with highly concentrated oxygen vacancies for gas sensing materials: A review Sens. Actuators A, Phys., vol. 309, Jul. 2020, Art. no. 112026, doi: 10.1016/j.sna.2020.112026.
P. Dular, C. Geuzaine, F. Henrotte, andW. Legros,A general environment for the treatment of discrete problems and its application to the finite element method IEEE Trans. Magn., vol. 34, no. 5, pp. 3395-3398, Sep. 1998, doi: 10.1109/20.717799.
J.-F. Fagnard, S. Stoukatch, P. Laurent, F. Dupont, C. Wolfs, S. D. Lambert, and J.-M. Redoute,Preparation and characterization of a thermal insulating carbon xerogel-epoxy composite adhesive for electronics applications IEEE Trans. Compon., Packag., Manuf. Technol., vol. 11, no. 4, pp. 606-615, Apr. 2021, doi: 10.1109/TCPMT.2021.3059478.
C. Coombs and H. Holden, Printed Circuits Handbook, 7th ed. New York, NY, USA: McGraw-Hill, 2015.
S. Stoukatch, P. Salvo, and M. Hernandez-Silveira,Low-Temperature microassembly methods and integration techniques for biomedical applications Wireless Medical Systems and Algorithms. Design and Applica-Tions, P. S. M. Hernandez-Silveira, Ed. Boca Raton, FL, USA: CRC Press, 2016, pp. 21-42.
S. Stoukatch, F. Dupont, and M. Kraft,Low-Temperature packaging methods as a key enablers for microsystems assembly and integration in Proc. Int. Semiconductor Conf. (CAS), Sinaia, Romania, Oct. 2018, pp. 115-118, doi: 10.1109/SMICND.2018.8539847