[en] The microbial ecology within the rhizosphere of Tylenchulus semipenetrans-infected Citrus L. trees was examined. Sixty bacterial strains were obtained from the roots of infected trees and from the eggs of T. semipenetrans. Among these strains some were obtained from the agar plates of two nematophagous fungi, Dactylellina gephyropaga (Drechsler) Ying Yang & Xing Z. Liu and Arthrobotrys conoides Drechsler. Bacterial strains were identified using 16S rDNA, gyrA and rpoB genes sequence analysis. Bacterial strains identified as Bacillus spp. were examined for their ability to synthesize surfactin, iturin, fengycin, kurstakin and bacillomycin using PCR amplification and sequencing of the encoding genes. Additionally, Bacillus strains were screened for their antifungal activity against F. solani, D. gephyropaga and A. conoides using the dual culture technique. Lipopeptide from whole cells and from supernatants of Bacillus spp. were screened using MALDI-TOF-MS analysis. The majority of the identified bacterial strains belong to the genus Bacillus with the predominance of B. cereus, B. thuringiensis, B. pumilus and B. subtilis. A total of fifteen Bacillus strains demonstrated an antifungal activity against F. solani, D. gephyropaga and A. conoides with the strongest effect found in B. amyloliquefaciens. The analysis of lipopeptides showed a high diversity of molecules, including majorly iturin C, bacillomycin D, fengycin A/B and Kurstakin found especially in B. subtilis strains. Moreover, MALDI-TOF-MS analysis showed that the responsible antibiotics for the antifungal Bacillus strains were associated with the presence of Surfactins/Pumilacidin and Fengycin A/B. Our results demonstrated the wide diversity of lipopeptides among Bacillus strains associated with citrus rhizosphere and demonstrated their antifungal ability. Our results extend the importance of Bacillus strains as potential candidates for antimicrobial activities due to their ability to synthesize and secrete cyclic lipopeptides.
Disciplines :
Biotechnology
Author, co-author :
Labiadh, Manel; Université de Carthage, National Agronomic Institute of Tunisia, LR13AGR0, Laboratoire de Recherche Bio-agresseur et Protection Intégrée en Agriculture, Ariana, Tunisia
Dhaouadi, Sabrine; Université de Carthage, National Agronomic Institute of Tunisia, LR13AGR0, Laboratoire de Recherche Bio-agresseur et Protection Intégrée en Agriculture, Ariana, Tunisia
Chollet, Marlène ; Université Lille Nord de France, Polytech-Lille/IUTA, Sciences et Technologies, Laboratoire ProBioGEM, France
Chataigne, Gabrielle; Université Lille Nord de France, Polytech-Lille/IUTA, Sciences et Technologies, Laboratoire ProBioGEM, France
Tricot, Catherine; Université Libre de Bruxelles, Institut de Recherches Microbiologiques Jean-Marie Wiame, Bruxelles, Belgium
Jacques, Philippe ; Université de Liège - ULiège > Département GxABT > Microbial, food and biobased technologies ; Université Lille Nord de France, Polytech-Lille/IUTA, Sciences et Technologies, Laboratoire ProBioGEM, France
Flahaut, Sigrid; Université Libre de Bruxelles, Institut de Recherches Microbiologiques Jean-Marie Wiame, Bruxelles, Belgium
Kallel, Sadreddine; Université de Carthage, National Agronomic Institute of Tunisia, LR13AGR0, Laboratoire de Recherche Bio-agresseur et Protection Intégrée en Agriculture, Ariana, Tunisia
Language :
English
Title :
Antifungal lipopeptides from Bacillus strains isolated from rhizosphere of Citrus trees
The authors thank the National Agronomic Institute of Tunisia and the University of Carthage of ministry of higher education and scientific research of Tunisia for their support. The work is supported by LR13AGR0, Laboratoire de Recherche Bio-agresseur et Protection Int?gr?e en Agriculture.The authors thank the National Agronomic Institute of Tunisia and the University of Carthage of ministry of higher education and scientific research of Tunisia for their support. The work is supported by LR13AGR0 , Laboratoire de Recherche Bio-agresseur et Protection Intégrée en Agriculture .
Abderrahmani, A., Tapi, A., Nateche, F., Chollet, M., Leclère, V., Wathelet, B., Hacene, H., Jacques, P., Bioinformatics and molecular approaches to detect NRPS genes involved in the biosynthesis of kurstakin from Bacillus thruringiensis. Appl. Genetic Molecular Biotech. 92 (2011), 571–581.
Ambrico, A., Trupo, M., Efficacy of cell free supernatant from Bacillus subtilis ET-1, an Iturin A producer strain, on biocontrol of green and gray mold. Postharvest Biol. Technol. 134 (2017), 5–10.
Athukorala, S.N., Fernando, W.G., Rashid, K.Y., Identification of antifungal antibiotics of Bacillus species isolated from different microhabitats using polymerase chain reaction and MALDI-TOF mass spectrometry. Can. J. Microbiol. 55:9 (2009), 1021–1032, 10.1139/w09-067.
Béchet, M., Caradec, T., Hussein, W., Abderrahmani, A., Chollet, M., Leclère, V., Dubois, T., Lereclus, D., Pupin, M., Jacques, P., Structure, biosynthesis and properties of kurstakins, NonRibosomal lipopeptides from Bacillus spp. Appl. Microbiol. Biotechnol. 95:3 (2012), 593–600.
Borriss, R., Wu, H., Gao, X., Secondary metabolites of the plant growth promoting model rhizobacterium Bacillus velezensis FZB42 are involved in direct suppression of plant pathogens and in stimulation of plant-induced systemic resistance. Singh, H.B., Keswani, C., Reddy, M.S., Sansinenea, E., Garc_ıa-Estrada, C., (eds.) Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms: Discovery and Applications, 2019, Springer, Singapore, 147–168.
Colo, J., Hajnal-Jafari, T.I., Duric, S., Stamenov, D., Hamidovic, S., Plant growth promotion rhizobacteria in onion production. Polish J. Microbiol. 63 (2014), 83–88.
Damasceno, C.L., Duarte, E.A.A., dos Santos, L.B.P.R., de Oliveira, T.A.S., de Jesus, F.N., de Oliveira, L.M., Góes-Neto, A., Soares, A.C.F., Postharvest biocontrol of anthracnose in bananas by endophytic and soil rhizosphere bacteria associated with sisal (Agave sisalana) in Brazil. Biol. Contr., 137, 2019, 104016, 10.1016/j.biocontrol.2019.10406.
Deleu, M., Paquot, M., Nylander, T., Fengycin interaction with lipid monolayers at the air-aqueous interface- implications for the effect of fengycin on biological membrane. J. Colloid Interface Sci. 283 (2005), 358–365.
Falardeau, J., Wise, C., Novitsky, L., Avis, T.J., Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens. J. Chem. Ecol. 39 (2013), 869–878.
Falbo, M.K., Soccol, V.T., Sandini, I.E., Vicente, V.A., Robl, D., Soccol, C.R., Isolation and characterization of the nematophagous fungus Arthrobotrys conoides. Parasitol. Res. 112:1 (2013), 177–185, 10.1007/s00436-012-3123-3.
Fira, D., Dimkic, I., Beric, T., Lozo, J., Stankovic, S., Biological control of plant pathogens by Bacillus species. J. Biotechnol. 285 (2018), 44–55.
Goswami, D., Dhandhukia, P., Patel, P., Thakker, J.N., Screening of PGPR from saline desert of Kutch: growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiol. Res. 169 (2014), 66–75.
Guo, Q., Dong, W., Li, S., Lu, X., Wang, P., Zhang, X., Wang, Y., Ma, P., Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease. Microbiol. Res. 169 (2014), 533–540.
Hao, X., Nguyen, T., Kearns, D.B., Arpin, C.C., Fall, R., Sammakia, T., New inhibitors of colony spreading in Bacillus subtilis and Bacillus anthracis. Bioorg. Med. Chem. Lett 21:18 (2011), 5583–5588, 10.1016/j.bmcl.2011.06.082.
Hernández-Morales, A., Martínez-Peniche, R.A., Arvizu-Gómez, J.L., Arvizu-Medrano, S.M., Rodríguez-Ontiveros, A., Ramos-López, M.A., pacheco-aguilar, J.R., Production of a mixture of fengycins with surfactant and antifungal activities by Bacillus sp. MA04, a versatile PGPR. Indian J. Microbiol. 58:2 (2018), 208–213, 10.1007/s12088-018-0711-7.
Kallel, S., Labiadh, M., Behaviour of the community of nematode trapping fungi isolated from the rhizosphere of Citrus naturally infested with Tylenchulus semipenetrans. Nematol. Mediterr. 38:2 (2010), 135–146.
Kallel, S., Elfekih, S., Abdelwahed, A., B'Chir, M.M., Etude comparative de l'adaptation de deux souches du champignon prédateur Monacrosporium salinum à la variation de facteurs abiotiques. Nematol. Mediterr. 36 (2008), 191–195.
Kearns, D.B., Losick, R., Swarming motility in undomesticated Bacillus subtilis. Mol. Microbiol. 49:3 (2004), 581–590, 10.1046/j.1365-2958.2003.03584.x.
Koumoutsi, A., Functional Genome Analysis of the Plant Growth Promoting Bacterium Bacillus Amyloliquefaciens Strain FZB42; Characterizing its Production and Regulation of Nonribosomal Peptide Synthetases. 2006, Dissertation, Humboldt-Universität, Berlin.
KRAAS, F.I., Helmetag, V., Wittmann, M., Strieker, M., Marahiel, M.A., Functional dissection of surfactin synthetase initiation module reveals insights into the mechanism of lipoinitiation. Chem. Biol. 17:8 (2010), 872–880.
Labiadh, M., Aidi, R., M'hamdi, B., Rhouma, A., Flahaut, S., Kallel, S., Occurrence and functional diversity of bacteria in rhizosphere of Citrus trees infested by Tylenchulus semipenetrans in a Citrus-growing area of Tunisia. Eur. J. Plant Pathol. 155 (2019), 475–488.
Labiadh, M., Dhaouadi, S., Flahaut, S., Kallel, S., Antimicrobial activity of Bacillus subtilis associated with Dactylellina gephyropaga against Arthrobotrys conoides isolated from nematode infested Citrus rhizosphere Biocontrol Science & Technology. https://doi.org/10.1080/09583157.2021.1917515, 2021.
Labuschagne, N., Vegte, F. A. Van Der, Kotzé, J.M., Interaction between Fusarium solani and Tylenchulus semipenetrans on Citrus roots. Phytophylactica 21 (1989), 29–33.
Leclère, Valérie, Marti, R., Béchet, M., Fickers, P., Jacques, P., The lipopeptides mycosubtilin and surfactin enhance spreading of Bacillus subtilis strains by their surface-active properties. Arch. Microbiol. 186 (2006), 475–483, 10.1007/s00203-006-0163-z.
Li, B., Li, Q., Xu, Z., Zhang, N., Shen, Q., Zhang, R., Responses of beneficial Bacillus amyloliquefaciens SQR9 to different soilborne fungal pathogens through the alteration of antifungal compound production. Front. Microbiol., 5, 2014, 636.
Madonna, A.J., Kent, J.V., Taranenko, N.I., Laiko, V.V., Doroshenko, V.M., Detection of cyclic lipopeptide biomarkers from Bacillus species using atmospheric pressure Matrix-Assisted Laser Desorption/ionization Mass spectrometry. Anal. Chem. 75:7 (2003), 1628–1637.
Mehta, P., Walia, A., Kulshrestha, S., Chauhan, A., Shirkot, C.K., Efficiency of plant growth-promoting P-solubilizing Bacillus circulans CB7 for enhancement of tomato growth under net house conditions. J. Basic Microbiol. 55 (2015), 33–44.
Mora, I., Cabrefiga, J., Montesinos, E., Cyclic lipopeptide biosynthetic genes and products, and inhibitory activity of plant-associated Bacillus against phytopathogenic bacteria. PLoS ONE, 10, 2015, e0127738.
Moyne, A.L., Cleveland, T.E., Tuzun, S., Molecular characterization and analysis of the operon encoding the antifungal lipopeptide bacillomycin D. FEMS Microbiol. Lett. 234 (2004), 43–49.
Mukhtar, S, Shahid, I, Mehnaz, S, Malik, KA, Assessment of two carrier materials for phosphate solubilizing biofertilizers and their effect on growth of wheat (Triticum aestivum L.). Microbiol. Res. 205 (2017), 107–117, 10.1016/j.micres.2017.08.011.
Raheem, A., Shaposhnikov, A., Belimov, A.A., Dodd, I.C., Ali, B., Auxin production by rhizobacteria was associated with improved yield of wheat (Triticum aestivum L.) under drought stress. Arch. Agron. Soil Sci. 64 (2017), 574–587.
Saxena, A.K., Karthikeyan, N., Rajawat, M.V.S., Microbial interventions for improving phosphorus and potassium nutrition in plants. Indian J. Fertilisers 13 (2017), 128–137.
Saxena, A.K., Kumar, M., Chakdar, H., Anuroopa, N., Bagyaraj, D.J., Bacillus species in soil as a natural resource for plant health and nutrition. J. Appl. Microbiol. 128:6 (2019), 1583–1594, 10.1111/jam.14506.
Sun, D., Liao, J., Sun, L., Wang, Y., Liu, Y., Deng, Q., Zhang, N., Xu, D., Fang, Z., Wang, W., Gooneratne, R., Effect of media and fermentation conditions on surfactin and iturin homologues produced by Bacillus natto NT-6: LC–MS analysis. Amb. Express, 9, 2019, 120, 10.1186/s13568-019-0845-y.
Tapi, A., Chollet-Imbert, M., Scherens, B., Jacques, P., New approach for the detection of non-ribosomal peptide synthetase genes in Bacillus strains by polymerase chain reaction. Appl. Microbiol. Biotechnol. 85 (2010), 1521–1531.
Vater, J., Gao, X., Hitzeroth, G., Wilde, C., Franke, P., ‘‘Whole cell’’ —matrix-assisted laser desorption ionization-time of flight-mass spectrometry, an emerging technique for efficient screening of biocombinatorial libraries of natural compounds present state of research. Comb. Chem. High Throughput Screen. 6:6 (2003), 557–567 PMID:14529380.
Velho, R.V., Medina, L.F.C., Segalin, J., Brandelli, A., Production of lipopeptides among Bacillus strains showing growth inhibition of phytopathogenic fungi. Folia microbial 56 (2011), 297–303.
Xu, Y., Cai, D., Zhang, H., Gao, L., Yang, Y., Gao, J., Li, Y., Yang, C., Ji, Z., Yu, J., Chen, S., Enhanced production of iturin A in Bacillus amyloliquefaciens by genetic engineering and medium optimization. Process Biochem. 90 (2020), 50–57, 10.1016/j.procbio.2019.11.017.
Xue, Y.J., Li, E.L., Jing, C.X., Ma, L., Cai, K.Z., Isolation, identification and characterization of the nematophagous fungus Arthrobotrys (Monacrosporium) sinense from China. Acta Parasitol. 26:2 (2018), 325–332, 10.1515/ap-2018-0037 63.
Yánez-Mendizábal, V., Zeriouh, H., Viñas, I., Torres, R., Usall, J., de Vicente, A., Pérez-García, A., Teixidó, N., Biological control of peach brown rot (Monilinia spp.) by Bacillus subtilis CPA-8 is based on production of fengycin-like lipopeptides. Eur. J. Plant Pathol. 132 (2012), 609–619.
Zaheer, A., Malik, A., Sher, A., Qaisrani, M.M., Mehmood, A., Ullah Khan, S., Rasool, M., Isolation, characterization, and effect of phosphate-zinc-solubilizing bacterial strains on chickpea (Cicer arietinum L.) growth. Saudi J. Bio.l Sci. 26 (2019), 1061–1067.
Zhao, X., Kuipers, O.P., Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species. BMC Genom., 17, 2016, 882.