Bioinformatics Modelling and Metabolic Engineering of the Branched Chain Amino Acid Pathway for Specific Production of Mycosubtilin Isoforms in Bacillus subtilis.
[en] Mycosubtilin belongs to the family of lipopeptides. Different isoforms with various antifungal activities can be obtained according to the length and the isomery of the fatty acid. In this work, the activities of the mycosubtilin isoforms were first studied against the pathogen Aspergillus niger, revealing the high activity of the anteiso-C17 isoform. Modification of the mycosubtilin isoform patterns during cultures of the natural strain Bacillus subtilis ATCC 6633 was then investigated through amino acid feeding experiments. In parallel, single-gene knockouts and single-gene overexpression, leading to the overproduction of the anteiso-C15 fatty acid chains, were predicted using informatics tools which provide logical reasoning with formal models of reaction networks. In this way, it was in silico predicted that the single overexpression of the ilvA gene as well as the single knockout of the codY gene may lead to the overproduction of anteiso-C15 fatty acid chains. For the first time, it has been demonstrated that overexpression of ilvA helps to enhance the furniture of odd anteiso fatty acids leading to a favored mycosubtilin anteiso-C17 production pattern (+41%). Alternatively, a knock-out codY mutant led to a higher furniture of even iso fatty acids, leading to a favored mycosubtilin iso-C16 production pattern (+180%). These results showed that increased selective synthesis of particular isoforms of mycosubtilin through metabolic engineering is feasible, disclosing the interest of these approaches for future development of lipopeptide-producing strains.
Coucheney, Françoise ; Équipe Métabolites Secondaires d'Origine Microbienne, Institut Charles Viollette, UMRt BioEcoAgro 1158-INRAE, Université de Lille, F-59000 Lille, France
Guy, Joany; Équipe Métabolites Secondaires d'Origine Microbienne, Institut Charles Viollette, UMRt BioEcoAgro 1158-INRAE, Université de Lille, F-59000 Lille, France
Béchet, Max; Équipe Métabolites Secondaires d'Origine Microbienne, Institut Charles Viollette, UMRt BioEcoAgro 1158-INRAE, Université de Lille, F-59000 Lille, France
Fontanille, Pierre ; Institut Pascal, Clermont Auvergne INP, CNRS, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
Chihib, Nour-Eddine; UMR 8207-UMET-Unité Matériaux et Transformations, Centrale Lille, INRAE, CNRS, Université de Lille, F-59000 Lille, France
Niehren, Joachim ; Biocomputing Team, Centre de Recherche en Informatique, Signal et Automatique de Lille CRIStAL, UMR CNRS 9189, Université de Lille, F-59000 Lille, France ; INRIA, Université de Lille, F-59000 Lille, France
Coutte, François ; Équipe Métabolites Secondaires d'Origine Microbienne, Institut Charles Viollette, UMRt BioEcoAgro 1158-INRAE, Université de Lille, F-59000 Lille, France
Jacques, Philippe ; Université de Liège - ULiège > Département GxABT > Microbial, food and biobased technologies
Language :
English
Title :
Bioinformatics Modelling and Metabolic Engineering of the Branched Chain Amino Acid Pathway for Specific Production of Mycosubtilin Isoforms in Bacillus subtilis.
Funding: This research received funding from the ALIBIOTECH program funding administered by the Hauts-de-France region. Joany Guy was supported by grant funded by the French Ministry of Research.
Ongena, M.; Jacques, P. Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends Microbiol. 2008, 16, 115–125. [CrossRef] [PubMed]
Jacques, P. Surfactin and Other Lipopeptides from Bacillus spp. In Biosurfactants: From Genes to Applications; Soberón-Chávez, G., Ed.; Microbiology Monographs; Springer: Berlin/Heidelberg, Germany, 2011; pp. 57–91. ISBN 978-3-642-14490-5.
Nasir, M.N.; Benichou, E.; Guez, J.S.; Jacques, P.; Brevet, P.-F.; Besson, F. Second Harmonic Generation to Monitor the Interactions of the Antimicrobial Mycosubtilin with Membrane-Mimicking Interfacial Monolayers. BioNanoScience 2012, 2, 108–112. [CrossRef]
Latoud, C.; Peypoux, F.; Michel, G. Action of iturin A, an antifungal antibiotic from Bacillus subtilis, on the yeast Saccharomyces cerevisiae: Modifications of membrane permeability and lipid composition. J. Antibiot. 1987, 40, 1588–1595. [CrossRef] [PubMed]
Maget-Dana, R.; Ptak, M. Iturin lipopeptides: Interactions of mycosubtilin with lipids in planar membranes and mixed monolayers. Biochim. Biophys. Acta (BBA)-Biomembr. 1990, 1023, 34–40. [CrossRef]
Besson, F.; Michel, G. Action of mycosubtilin, an antifungal antibiotic of Bacillus subtilis, on the cell membrane of Saccharomyces cerevisiae. Microbios 1989, 59, 113–121.
Fickers, P.; Guez, J.-S.; Damblon, C.; Leclère, V.; Béchet, M.; Jacques, P.; Joris, B. High-Level Biosynthesis of the Anteiso-C 17 Isoform of the Antibiotic Mycosubtilin in Bacillus subtilis and Characterization of Its Candidacidal Activity. Appl. Environ. Microbiol. 2009, 75, 4636–4640. [CrossRef] [PubMed]
Kourmentza, K.; Gromada, X.; Michael, N.; Degraeve, C.; Vanier, G.; Ravallec, R.; Coutte, F.; Karatzas, K.A.; Jauregi, P. Antimicrobial Activity of Lipopeptide Biosurfactants against Foodborne Pathogen and Food Spoilage Microorganisms and Their Cytotoxicity. Front. Microbiol. 2021, 11, 3398. [CrossRef] [PubMed]
Béchet, M.; Castéra-Guy, J.; Guez, J.-S.; Chihib, N.-E.; Coucheney, F.; Coutte, F.; Fickers, P.; Leclère, V.; Wathelet, B.; Jacques, P. Production of a novel mixture of mycosubtilins by mutants of Bacillus subtilis. Bioresour. Technol. 2013, 145, 264–270. [CrossRef] [PubMed]
Desmyttere, H.; Deweer, C.; Muchembled, J.; Sahmer, K.; Jacquin, J.; Coutte, F.; Jacques, P. Antifungal Activities of Bacillus subtilis Lipopeptides to Two Venturia inaequalis Strains Possessing Different Tebuconazole Sensitivity. Front. Microbiol. 2019, 10, 2327. [CrossRef] [PubMed]
Mejri, S.; Siah, A.; Coutte, F.; Magnin-Robert, M.; Randoux, B.; Tisserant, B.; Krier, F.; Jacques, P.; Reignault, P.; Halama, P. Biocontrol of the wheat pathogen Zymoseptoria tritici using cyclic lipopeptides from Bacillus subtilis. Environ. Sci. Pollut. Res. 2018, 25, 29822–29833. [CrossRef]
Deravel, J.; Lemière, S.; Coutte, F.; Krier, F.; Van Hese, N.; Béchet, M.; Sourdeau, N.; Höfte, M.; Lepretre, A.; Jacques, P. Mycosubtilin and surfactin are efficient, low ecotoxicity molecules for the biocontrol of lettuce downy mildew. Appl. Microbiol. Biotechnol. 2014, 98, 6255–6264. [CrossRef] [PubMed]
Besson, F.; Peypoux, F.; Michel, G.; Delcambe, L. Antifungal activity upon Saccharomyces cerevisiae of iturin A, mycosubtilin, bacillomycin L and of their derivatives; Inhibition of this antifungal activity by lipid antagonists. J. Antibiot. 1979, 32, 828–833. [CrossRef] [PubMed]
Kohli, R.M.; Trauger, J.W.; Schwarzer, D.; Marahiel, M.A.; Walsh, C.T. Generality of Peptide Cyclization Catalyzed by Isolated Thioesterase Domains of Nonribosomal Peptide Synthetases. Biochemistry 2001, 40, 7099–7108. [CrossRef]
Genest, M.; Marion, D.; Caille, A.; Ptak, M. Modelling and refinement of the conformation of mycosubtilin in solution from two-dimensional NMR data. J. Biol. Inorg. Chem. 1987, 169, 389–398. [CrossRef] [PubMed]
Marion, D.; Genest, M.; Caille, A.; Peypoux, F.; Michel, G.; Ptak, M. Conformational study of bacterial lipopeptides: Refinement of the structure of iturin A in solution by two-dimensional1H-nmr and energy calculations. Biopolym. Orig. Res. Biomol. 1986, 25, 153–170. [CrossRef] [PubMed]
Razafindralambo, H.; Popineau, Y.; Deleu, M.; Hbid, C.; Jacques, P.; Thonart, P.; Paquot, M. Foaming Properties of Lipopeptides Produced by Bacillus subtilis: Effect of Lipid and Peptide Structural Attributes. J. Agric. Food Chem. 1998, 46, 911–916. [CrossRef]
Hbid, C. Contribution à l’étude de la Relation Entre la Structure des Lipopeptides de Bacillus subtilis et Leurs activités hémolytique et Antifongique. Ph.D. Thesis, University of Liège, Liège, Belgium, 1996.
Eshita, S.M.; Roberto, N.H.; Beale, J.M.; Mamiya, B.M.; Workman, R.F. Bacillomycin Lc, a New Antibiotic of the Iturin Group: Isolation, Structures, and Antifungal Activities of the Congeners. J. Antibiot. 1995, 48, 1240–1247. [CrossRef] [PubMed]
Duitman, E.H.; Hamoen, L.W.; Rembold, M.; Venema, G.; Seitz, H.; Saenger, W.; Bernhard, F.; Reinhardt, R.; Schmidt, M.; Ullrich, C.; et al. The mycosubtilin synthetase of Bacillus subtilis ATCC6633: A multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase. Proc. Natl. Acad. Sci. USA 1999, 96, 13294–13299. [CrossRef]
Hansen, D.B.; Bumpus, S.B.; Aron, Z.; Kelleher, A.N.L.; Walsh, C.T. The Loading Module of Mycosubtilin: An Adenylation Domain with Fatty Acid Selectivity. J. Am. Chem. Soc. 2007, 129, 6366–6367. [CrossRef] [PubMed]
Aron, Z.D.; Dorrestein, P.C.; Blackhall, J.R.; Kelleher, A.N.L.; Walsh, C.T. Characterization of a New Tailoring Domain in Polyketide Biogenesis: The Amine Transferase Domain of MycA in the Mycosubtilin Gene Cluster. J. Am. Chem. Soc. 2005, 127, 14986–14987. [CrossRef] [PubMed]
Weissman, K.J.; Leadlay, P. Combinatorial biosynthesis of reduced polyketides. Nat. Rev. Genet. 2005, 3, 925–936. [CrossRef] [PubMed]
Suutari, M.; Laakso, S. Unsaturated and branched chain-fatty acids in temperature adaptation of Bacillus subtilis and Bacillus megaterium. Biochim. Biophys. Acta (BBA)-Lipids Lipid Metab. 1992, 1126, 119–124. [CrossRef]
Kaneda, T. Fatty Acids of the Genus Bacillus: An Example of Branched-Chain Preference. Bacteriol. Rev. 1977, 41, 391–418. [CrossRef]
Mäder, U.; Hennig, S.; Hecker, M.; Homuth, G. Transcriptional Organization and Posttranscriptional Regulation of the Bacillus subtilis Branched-Chain Amino Acid Biosynthesis Genes. J. Bacteriol. 2004, 186, 2240–2252. [CrossRef]
Coutte, F.; Niehren, J.; Dhali, D.; John, M.; Versari, C.; Jacques, P. Modeling leucine’s metabolic pathway and knockout prediction improving the production of surfactin, a biosurfactant from Bacillus subtilis. Biotechnol. J. 2015, 10, 1216–1234. [CrossRef]
Fink, P.S. Biosynthesis of the Branched-Chain Amino Acids. In Bacillus Subtilis and Other Gram-Positive Bacteria; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1993; pp. 307–317. ISBN 978-1-68367-277-7.
Debarbouille, M.; Gardan, R.; Arnaud, M.; Rapoport, G. Role of BkdR, a Transcriptional Activator of the SigL-Dependent Isoleucine and Valine Degradation Pathway in Bacillus Subtilis. J. Bacteriol. 1999, 181, 2059–2066. [CrossRef]
Brinsmade, S.R.; Kleijn, R.J.; Sauer, U.; Sonenshein, A.L. Regulation of CodY Activity through Modulation of Intracellular Branched-Chain Amino Acid Pools. J. Bacteriol. 2010, 192, 6357–6368. [CrossRef]
Dhali, D.; Coutte, F.; Arias, A.A.; Auger, S.; Bidnenko, V.; Chataigné, G.; Lalk, M.; Niehren, J.; De Sousa, J.; Versari, C.; et al. Genetic engineering of the branched fatty acid metabolic pathway of Bacillus subtilis for the overproduction of surfactin C14 isoform. Biotechnol. J. 2017, 12, 1600574. [CrossRef] [PubMed]
Wang, C.; Cao, Y.; Wang, Y.; Sun, L.; Song, H. Enhancing surfactin production by using systematic CRISPRi repression to screen amino acid biosynthesis genes in Bacillus subtilis. Microb. Cell Factories 2019, 18, 90. [CrossRef] [PubMed]
Besson, F.; Tenoux, I.; Hourdou, M.-L.; Michel, G. Synthesis of β-hydroxy fatty acids and β-amino fatty acids by the strains of Bacillus subtilis producing iturinic antibiotics. Biochim. Biophys. Acta (BBA)-Lipids Lipid Metab. 1992, 1123, 51–58. [CrossRef]
Guez, J.-S.; Vassaux, A.; Larroche, C.; Jacques, P.; Coutte, F. New Continuous Process for the Production of Lipopeptide Biosurfactants in Foam Overflowing Bioreactor. Front. Bioeng. Biotechnol. 2021, 9, 678469. [CrossRef] [PubMed]
Leclère, V.; Béchet, M.; Adam, A.; Guez, J.-S.; Wathelet, B.; Ongena, M.; Thonart, P.; Gancel, F.; Chollet-Imbert, M.; Jacques, P. Mycosubtilin Overproduction by Bacillus subtilis BBG100 Enhances the Organism’s Antagonistic and Biocontrol Activities. Appl. Environ. Microbiol. 2005, 71, 4577–4584. [CrossRef] [PubMed]
Guez, J.; Müller, C.; Danze, P.; Büchs, J.; Jacques, P. Respiration activity monitoring system (RAMOS), an efficient tool to study the influence of the oxygen transfer rate on the synthesis of lipopeptide by Bacillus subtilis ATCCJ. J. Biotechnol. 2008, 134, 121–126. [CrossRef] [PubMed]
Thimon, L.; Peypoux, F.; Maget-Dana, R.; Roux, B.; Michel, G. Interactions of bioactive lipopeptides, iturin A and surfactin from Bacillus subtilis. Biotechnol. Appl. Biochem. 1992, 16, 144–151.
Löffler, J.; Einsele, H.; Hebart, H.; Schumacher, U.; Hrastnik, C.; Daum, G.; Löffler, J.; Daum, G. Phospholipid and sterol analysis of plasma membranes of azole-resistantCandida albicansstrains. FEMS Microbiol. Lett. 2000, 185, 59–63. [CrossRef]
Tereshina, V.M.; Memorskay, A.S.; Kotlova, E.R.; Feofilov, E.P. Membrane lipid and cytosol carbohydrate composition in Aspergillus niger under heat shock. Microbiology 2010, 79, 40–46. [CrossRef]
Hourdou, M.-L.; Besson, F.; Tenoux, I.; Michel, G. Fatty acid and β-amino acid syntheses in strains of Bacillus subtilis producing iturinic antibiotics. Lipids 1989, 24, 940–944. [CrossRef]
Sonenshein, A.L. Control of key metabolic intersections in Bacillus subtilis. Nat. Rev. Genet. 2007, 5, 917–927. [CrossRef]
Brinsmade, S.R.; Alexander, E.L.; Livny, J.; Stettner, A.I.; Segrè, D.; Rhee, K.Y.; Sonenshein, A.L. Hierarchical expression of genes controlled by the Bacillus subtilis global regulatory protein CodY. Proc. Natl. Acad. Sci. USA 2014, 111, 8227–8232. [CrossRef]
Molle, V.; Nakaura, Y.; Shivers, R.P.; Yamaguchi, H.; Losick, R.; Fujita, Y.; Sonenshein, A.L. Additional Targets of the Bacillus subtilis Global Regulator CodY Identified by Chromatin Immunoprecipitation and Genome-Wide Transcript Analysis. J. Bacteriol. 2003, 185, 1911–1922. [CrossRef]
Belitsky, B.R.; Brinsmade, S.R.; Sonenshein, A.L. Intermediate Levels of Bacillus subtilis CodY Activity Are Required for Derepression of the Branched-Chain Amino Acid Permease, BraB. PLoS Genet. 2015, 11, e1005600. [CrossRef] [PubMed]
Niehren, J.; Versari, C.; John, M.; Coutte, F.; Jacques, P. Predicting changes of reaction networks with partial kinetic information. BioSystems 2016, 149, 113–124. [CrossRef] [PubMed]
Thomaides, H.B.; Davison, E.J.; Burston, L.; Johnson, H.; Brown, D.R.; Hunt, A.C.; Errington, J.; Czaplewski, L. Essential Bacterial Functions Encoded by Gene Pairs. J. Bacteriol. 2007, 189, 591–602. [CrossRef] [PubMed]
Berger, B.J.; English, S.; Chan, G.; Knodel, M.H. Methionine Regeneration and Aminotransferases in Bacillus subtilis, Bacillus cereus, and Bacillus anthracis. J. Bacteriol. 2003, 185, 2418–2431. [CrossRef] [PubMed]
Duitman, E.H.; Wyczawski, D.; Boven, L.G.; Venema, G.; Kuipers, O.P.; Hamoen, L.W. Novel Methods for Genetic Transformation of Natural Bacillus subtilis Isolates Used To Study the Regulation of the Mycosubtilin and Surfactin Synthetases. Appl. Environ. Microbiol. 2007, 73, 3490–3496. [CrossRef]
Hamoen, L.W.; Kausche, D.; Marahiel, M.A.; van Sinderen, D.; Venema, G.; Serror, P. The Bacillus subtilis transition state regulator AbrB binds to the—35 promoter region of comK. FEMS Microbiol. Lett. 2003, 218, 299–304. [CrossRef] [PubMed]
Kaan, T.; Homuth, G.; Mäder, U.; Bandow, J.; Schweder, T. Genome-wide transcriptional profiling of the Bacillus subtilis cold-shock response. Microbiology 2002, 148, 3441–3455. [CrossRef] [PubMed]
Allart, E.; Niehren, J.; Versari, C. Computing difference abstractions of linear equation systems. Theor. Comput. Sci. 2021, 893, 72–104. [CrossRef]
Tojo, S.; Satomura, T.; Morisaki, K.; Yoshida, K.-I.; Hirooka, K.; Fujita, Y. Negative Transcriptional Regulation of the ilv-leu Operon for Biosynthesis of Branched-Chain Amino Acids through the Bacillus subtilis Global Regulator TnrA. J. Bacteriol. 2004, 186, 7971–7979. [CrossRef]
Cai, D.; Zhu, J.; Li, Y.; Li, L.; Zhang, M.; Wang, Z.; Yang, H.; Li, J.; Yang, Z.; Chen, S. Systematic engineering of branch chain amino acid supply modules for the enhanced production of bacitracin from Bacillus licheniformis. Metab. Eng. Commun. 2020, 11, e00136. [CrossRef] [PubMed]
Wu, Q.; Zhi, Y.; Xu, Y. Systematically engineering the biosynthesis of a green biosurfactant surfactin by Bacillus subtilis. Metab. Eng. 2019, 52, 87–97. [CrossRef] [PubMed]
Clark, J.B. In Situ Microbial Enhancement of Oil Production. Dev. Ind. Microbiol. 1981, 22, 695–701.
Tsuge, K.; Akiyama, T.; Shoda, M. Cloning, Sequencing, and Characterization of the Iturin A Operon. J. Bacteriol. 2001, 183, 6265–6273. [CrossRef]
Sambrook, J.F.; Russel, D.W. Molecular Cloning: A Laboratory Manual, 3rd ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2001; ISBN 978-087969577-4.
Guez, J.-S.; Coutte, F.; Drucbert, A.-S.; Chihib, N.-E.; Danzé, P.-M.; Jacques, P. Resistance of the cell wall to degradation is a critical parameter for isolation of high quality RNA from natural isolates of Bacillus subtilis. Arch. Microbiol. 2009, 191, 669–673. [CrossRef] [PubMed]
Larson, B.; Helgren, J.; Manolache, S.; Lau, A.; Lagally, M.; Denes, F. Cold-plasma modification of oxide surfaces for covalent biomolecule attachment. Biosens. Bioelectron. 2005, 21, 796–801. [CrossRef] [PubMed]
Peypoux, F.; Besson, F.; Michel, G.; Delcambe, L. Structure of Bacillomycin D, a New Antibiotic of the Iturin Group. J. Biol. Inorg. Chem. 2005, 118, 323–327. [CrossRef] [PubMed]
Miller, L.; Berger, T. Bacteria Identification by Gas Chromatography of Whole Cell Fatty Acids. Hewlett Packard Appl. Note 1985, 228, 228–241.
Chihib, N.-E.; Da Silva, M.R.; Delattre, G.; Laroche, M.; Federighi, M. Different cellular fatty acid pattern behaviours of two strains of Listeria monocytogenes Scott A and CNL 895807 under different temperature and salinity conditions. FEMS Microbiol. Lett. 2003, 218, 155–160. [CrossRef] [PubMed]