Modeling and Simulation; Earth and Planetary Sciences (all)
Abstract :
[en] West African Sahelian and Sudanian ecosystems provide essential services to people and also play a significant role within the global carbon cycle. However, climate and land use are dynamically changing, and uncertainty remains with respect to how these changes will affect the potential of these regions to provide food and fodder resources or how they will affect the biosphere-atmosphere exchange of CO2. In this study, we investigate the capacity of a process-based biogeochemical model, LandscapeDNDC, to simulate net ecosystem exchange (NEE) and aboveground biomass of typical managed and natural Sahelian and Sudanian savanna ecosystems. In order to improve the simulation of phenology, we introduced soil-water availability as a common driver of foliage development and productivity for all of these systems. The new approach was tested by using a sample of sites (calibration sites) that provided NEE from flux tower observations as well as leaf area index data from satellite images (MODIS, MODerate resolution Imaging Spectroradiometer). For assessing the simulation accuracy, we applied the calibrated model to 42 additional sites (validation sites) across West Africa for which measured aboveground biomass data were available. The model showed good performance regarding biomass of crops, grass, or trees, yielding correlation coefficients of 0.82, 0.94, and 0.77 and root-mean-square errors of 0.15, 0.22, and 0.12gkggm-2, respectively. The simulations indicate aboveground carbon stocks of up to 0.17, 0.33, and 0.54gkggCgha-1gm-2 for agricultural, savanna grasslands, and savanna mixed tree-grassland sites, respectively. Carbon stocks and exchange rates were particularly correlated with the abundance of trees, and grass biomass and crop yields were higher under more humid climatic conditions. Our study shows the capability of LandscapeDNDC to accurately simulate carbon balances in natural and agricultural ecosystems in semiarid West Africa under a wide range of conditions; thus, the model could be used to assess the impact of land-use and climate change on the regional biomass productivity.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Rahimi, Jaber ; Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany
Ago, Expedit Evariste; Laboratoire d'Ecologie Appliquée, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, Cotonou, Benin ; Biodiversity and Landscape Unit, Université de Liège Gembloux Agro-Bio Tech, Gembloux, Belgium
Ayantunde, Augustine; International Livestock Research Institute (ILRI), Ouagadougou, Burkina Faso
Berger, Sina; Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany ; Regional Climate and Hydrology Research Group, University of Augsburg, Augsburg, Germany
Bogaert, Jan ; Université de Liège - ULiège > Département GxABT > Biodiversité et Paysage
Butterbach-Bahl, Klaus ; Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany ; International Livestock Research Institute (ILRI), Nairobi, Kenya
Cappelaere, Bernard ; HydroSciences Montpellier, Université Montpellier, IRD, CNRS, Montpellier, France
Cohard, Jean-Martial ; IRD, CNRS, Université Grenoble Alpes, Grenoble, France
Demarty, Jérôme; HydroSciences Montpellier, Université Montpellier, IRD, CNRS, Montpellier, France
Diouf, Abdoul Aziz; Centre de Suivi Ecologique (CSE), Dakar, Senegal
Haas, Edwin ; Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany
Hiernaux, Pierre; Géosciences Environnement Toulouse (GET), CNRS, IRD, UPS, Toulouse, France ; Pastoralisme Conseil, Caylus, France
Kraus, David ; Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany
Roupsard, Olivier ; CIRAD, UMR EcoandSols, BP1386, CP18524, Dakar, Senegal ; EcoandSols, Université Montpellier, CIRAD, INRAE, IRD, Institut Agro, Montpellier, France ; LMI IESOL, Centre IRD-ISRA de Bel Air, BP1386, CP18524, Dakar, Senegal
Scheer, Clemens; Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany
Srivastava, Amit Kumar; Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
Tagesson, Torbern; Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark ; Department of Physical Geography and Ecosystem Sciences, Lund University, Lund, Sweden
Grote, Rüdiger ; Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany
Financial support. This research has been supported by the UP-Acknowledgements. The authors appreciate the fruitful cooperation and data exchange with the EU-funded CASSECS project and the staff of the AMMA-CATCH observatory. Furthermore, some of the climate data were obtained from the NASA Langley Research Center (LaRC) POWER Project, funded through the NASA Earth Science/Applied Science Program. We acknowledge support by the KIT-Publication Fund of the Karlsruhe Institute of Technology.
Ago, E. E.: Dynamique des flux de carbone entre l'atmosphère et des écosystèmes ouest-africains: cas des forêts et savanes sous climat soudanien au Bénin, Doctorat en Sciences Agronomiques et Ingénierie Biologique, Université de Liège, Gembloux, Belgique, 184 pp., 2016.
Ago, E. E., Agbossou, E. K., Galle, S., Cohard, J.-M., Heinesch, B., and Aubinet, M.: Long term observations of carbon dioxide exchange over cultivated savanna under a Sudanian climate in Benin (West Africa), Agric. Forest Meteorol., 197, 13-25, https://doi.org/10.1016/j.agrformet.2014.06.005, 2014.
Ago, E. E., Agbossou, E. K., Cohard, J.-M., Galle, S., and Aubinet, M.: Response of CO2 fluxes and productivity to water availability in two contrasting ecosystems in northern Benin (West Africa), Ann. For. Sci., 73, 483-500, https://doi.org/10.1007/s13595-016-0542-9, 2016.
Ahlström, A., Raupach, M. R., Schurgers, G., Smith, B., Arneth, A., Jung, M., Reichstein, M., Canadell, J. G., Friedlingstein, P., Jain, A. K., Kato, E., Poulter, B., Sitch, S., Stocker, B. D., Viovy, N., Wang, Y. P., Wiltshire, A., Zaehle, S., and Zeng, N.: The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink, Science, 348, 895-899, https://doi.org/10.1126/science.aaa1668, 2015.
Ainsworth, E. A. and Rogers, A.: The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions, Plant Cell Environ., 30, 258-270, https://doi.org/10.1111/j.1365-3040.2007.01641.x, 2007.
Akponikpè, P. B. I., Gérard, B., Michels, K., and Bielders, C.: Use of the APSIM model in long term simulation to support decision making regarding nitrogen management for pearl millet in the Sahel, European J. Agronomy, 32, 144-154, https://doi.org/10.1016/j.eja.2009.09.005, 2010.
Baldocchi, D. and Meyers, T.: On using eco-physiological, micrometeorological and biogeochemical theory to evaluate carbon dioxide, water vapor and trace gas fluxes over vegetation: a perspective, Agric. Forest Meteorol., 90, 1-25, https://doi.org/10.1016/S0168-1923(97)00072-5, 1998.
Baldocchi, D. and Xu, L.: Carbon exchange of deciduous broadleaved forests in temperate and Mediterranean regions, in: The Carbon Balance of Forest Biomes, edited by: Griffiths, H. and Jarvis, P. J., Garland Science/BIOS Scientific Publishers, London, 187-213, 2005.
Baldocchi, D. D., Xu, L., and Kiang, N.: How plant functionaltype, weather, seasonal drought, and soil physical properties alter water and energy fluxes of an oak-grass savanna and an annual grassland, Agric. Forest Meteorol., 123, 13-39, https://doi.org/10.1016/j.agrformet.2003.11.006, 2004.
Ball, J. T., Woodrow, I. E., and Berry, J. A.: A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions, in: Prog. Photosyn. Res., edited by: Biggins, J., Martinus-Nijhoff Publishers, Dordrecht, the Netherlands, 221-224, 1987.
Batjes, N. H.: Harmonized soil profile data for applications at global and continental scales: updates to the WISE database, Soil Use Manage., 25, 124-127, https://doi.org/10.1111/j.1475-2743.2009.00202.x, 2008.
Baup, F., Mougin, E., de Rosnay, P., Timouk, F., and Chênerie, I.: Surface soil moisture estimation over theAMMASahelian site in Mali using ENVISAT/ASAR data, Remote. Sens. Environ., 109, 473-481, https://doi.org/10.1016/j.rse.2007.01.015, 2007.
Bauters, M., Drake, T. W., Verbeeck, H., Bodé, S., Hervé-Fernández, P., Zito, P., Podgorski, D. C., Boyemba, F., Makelele, I., Cizungu Ntaboba, L., Spencer, R. G. M., and Boeckx, P.: High fire-derived nitrogen deposition on central African forests, P. Natl. Acad. Sci. USA, 115, 549-554, https://doi.org/10.1073/pnas.1714597115, 2018.
Berger, S., Bliefernicht, J., Linstädter, A., Canak, K., Guug, S., Heinzeller, D., Hingerl, L., Mauder, M., Neidl, F., Quansah, E., Salack, S., Steinbrecher, R., and Kunstmann, H.: The impact of rain events on CO2 emissions from contrasting land use systems in semi-arid West African savannas, Sci. Total Environ., 647, 1478-1489, https://doi.org/10.1016/j.scitotenv.2018.07.397, 2019.
Bernacchi, C. J., Portis, A. R., Nakano, H., von Caemmerer, S., and Long, S. P.: Temperature Response of Mesophyll Conductance. Implications for the Determination of Rubisco Enzyme Kinetics and for Limitations to Photosynthesis in Vivo, Plant Physiol., 130, 1992-1998, https://doi.org/10.1104/pp.008250, 2002.
Bliefernicht, J., Berger, S., Salack, S., Guug, S., Hingerl, L., Heinzeller, D., Mauder, M., Steinbrecher, R., Steup, G., Bossa, A. Y., Waongo, M., Quansah, E., Balogun, A. A., Yira, Y., Arnault, J., Wagner, S., Klein, C., Gessner, U., Knauer, K., Straub, A., Schönrock, R., Kunkel, R., Okogbue, E. C., Rogmann, A., Neidl, F., Jahn, C., Diekkrüger, B., Aduna, A., Barry, B., and Kunstmann, H.: The WASCAL Hydrometeorological Observatory in the Sudan Savanna of Burkina Faso and Ghana, Vadose Zone J., 17, 180065, https://doi.org/10.2136/vzj2018.03.0065, 2018.
Boke-Olén, N., Lehsten, V., Ardö, J., Beringer, J., Eklundh, L., Holst, T., Veenendaal, E., and Tagesson, T.: Estimating and Analyzing Savannah Phenology with a Lagged Time Series Model, PLoS ONE, 11, e0154615-e0154615, https://doi.org/10.1371/journal.pone.0154615, 2016.
Bocksberger, G., Schnitzler, J., Chatelain, C., Daget, P., Janssen, T., Schmidt, M., Thiombiano, A., and Zizka, G.: Climate and the distribution of grasses in West Africa, J. Veg. Sci., 27, 306-317, https://doi.org/10.1111/jvs.12360, 2016.
Bombelli, A., Henry, M., Castaldi, S., Adu-Bredu, S., Arneth, A., de Grandcourt, A., Grieco, E., Kutsch, W. L., Lehsten, V., Rasile, A., Reichstein, M., Tansey, K., Weber, U., and Valentini, R.: An outlook on the Sub-Saharan Africa carbon balance, Biogeosciences, 6, 2193-2205, https://doi.org/10.5194/bg-6-2193-2009, 2009.
Boone, R. B., Galvin, K. A., Coughenour, M. B., Hudson, J. W., Weisberg, P. J., Vogel, C. H., and Ellis, J. E.: Ecosystem modeling adds value to a south african climate forecast, Clim. Change, 64, 317-340, https://doi.org/10.1023/B:CLIM.0000025750.09629.48, 2004.
Boulain, N., Cappelaere, B., Ramier, D., Issoufou, H. B. A., Halilou, O., Seghieri, J., Guillemin, F., Oï, M., Gignoux, J., and Timouk, F.: Towards an understanding of coupled physical and biological processes in the cultivated Sahel-2. Vegetation and carbon dynamics, J. Hydrol., 375, 190-203, https://doi.org/10.1016/j.jhydrol.2008.11.045, 2009.
Boyd, R. A., Gandin, A., and Cousins, A. B.: Temperature Responses of C4 Photosynthesis: Biochemical Analysis of Rubisco, Phosphoenolpyruvate Carboxylase, and Carbonic Anhydrase in Setaria viridis, Plant Physiol., 169, 1850-1861, https://doi.org/10.1104/pp.15.00586, 2015.
Brümmer, C., Falk, U., Papen, H., Szarzynski, J., Wassmann, R., and Brüggemann, N.: Diurnal, seasonal, and interannual variation in carbon dioxide and energy exchange in shrub savanna in Burkina Faso (West Africa), J. Geophys. Res., 113, G02030, https://doi.org/10.1029/2007JG000583, 2008.
Buba, T.: Prediction equations for estimating tree height, crown diameter, crown height and crown ratio of Parkia biglobosa in the Nigerian guinea savanna, Afr. J. Agr. Res., 7, 6541-6543, https://doi.org/10.5897/AJAR12.276, 2013.
Buchhorn, M., Smets, B., Bertels, L., Lesiv, M., Tsendbazar, N.-E., Masiliunas, D., Linlin, L., Herold, M., and Fritz, S.: Copernicus Global Land Service: Land Cover 100m: Collection 3: epoch 2019: Globe (Version V3.0.1) [Data set], Zenodo, https://doi.org/10.5281/zenodo.3939050, 2020.
Butterbach-Bahl, K., Grote, R., Haas, E., Kiese, R., Klatt, S., and Kraus, D.: LandscapeDNDC (v1.30.4) [code], Karlsruhe Institute of Technology (KIT), https://doi.org/10.35097/438, 2021.
Caldararu, S., Purves, D. W., and Smith, M. J.: The impacts of data constraints on the predictive performance of a general processbased crop model (PeakN-crop v1.0), Geosci. Model Dev., 10, 1679-1701, https://doi.org/10.5194/gmd-10-1679-2017, 2017.
Camargo, A. P., Marin, F. R., Sentelhas, P. C., and Picini, A. G.: Adjust of the Thornthwaite's method to estimate the potential evapotranspiration for arid and superhumid climates, based on daily temperature amplitude, Bras. Agrometeorol., 7, 251-257, https://doi.org/10.1007/s00704-019-02873-1, 1999.
Cappelaere, B., Descroix, L., Lebel, T., Boulain, N., Ramier, D., Laurent, J. P., Favreau, G., Boubkraoui, S., Boucher, M., Bouzou Moussa, I., Chaffard, V., Hiernaux, P., Issoufou, H. B. A., Le Breton, E., Mamadou, I., Nazoumou, Y., Oi, M., Ottlé, C., and Quantin, G.: The AMMA-CATCH experiment in the cultivated Sahelian area of south-west Niger-Investigating water cycle response to a fluctuating climate and changing environment, J. Hydrol., 375, 34-51, https://doi.org/10.1016/j.jhydrol.2009.06.021, 2009.
Chandra, A. and Dubey, A.: Evaluation of genus Cenchrus based on malondialdehyde, proline content, specific leaf area and carbon isotope discrimination for drought tolerance and divergence of species at DNA level, Acta Physiol. Plant., 30, 53-61, https://doi.org/10.1007/s11738-007-0090-x, 2008.
Chen, Q., Baldocchi, D., Gong, P., and Dawson, T.: Modeling radiation and photosynthesis of a heterogeneous savanna woodland landscape with a hierarchy of model complexities, Agric. Forest Meteorol., 148, 1005-1020, https://doi.org/10.1016/j.agrformet.2008.01.020, 2008.
Collatz, G. J., Ribas-Carbo, M., and Berry, J. A.: Coupled photosynthesis-stomatal conductance model for leaves of C4 plants, Aust. J. Plant Physiol., 19, 519-538, https://doi.org/10.1071/PP9920519 1992.
Dagbenonbakin, G. D.: Productivity and water use efficiency of important crops in the upper Oueme Catchment: influence of nutrient limitations, nutrient balances and soil fertility, PhD, Hohe Landwirtschaftliche Fakultät, Rheinischen Friedrich-Wilhelms-Universität Bonn, Bonn, 212 pp., 2005.
Da Matta, F. M., Loos, R. A., Rodrigues, R., and Barros, R.: Actual and potential photosynthetic rates of tropical crop species, Revista Brasileira de Fisiologia Vegetal, 13, 24-32, https://doi.org/10.1590/S0103-31312001000100003., 2001.
Dayamba, S. D., Djoudi, H., Zida, M., Sawadogo, L., and Verchot, L.: Biodiversity and carbon stocks in different land use types in the Sudanian Zone of Burkina Faso, West Africa, Agr. Ecosyst. Environ., 216, 61-72, https://doi.org/10.1016/j.agee.2015.09.023, 2016.
de Jong, S. M. and Jetten, V. G.: Estimating spatial patterns of rainfall interception from remotely sensed vegetation indices and spectral mixture analysis, Int. J. Geogr. Inf. Sci., 21, 529-545, https://doi.org/10.1080/13658810601064884, 2007.
de Rosnay, P., Gruhier, C., Timouk, F., Baup, F., Mougin, E., Hiernaux, P., Kergoat, L., and LeDantec, V.: Multi-scale soil moisture measurements at the Gourma meso-scale site in Mali, J. Hydrol., 375, 241-252, https://doi.org/10.1016/j.jhydrol.2009.01.015, 2009.
Delon, C., Mougin, E., Serça, D., Grippa, M., Hiernaux, P., Diawara, M., Galy-Lacaux, C., and Kergoat, L.: Modelling the effect of soil moisture and organic matter degradation on biogenic NO emissions from soils in Sahel rangeland (Mali), Biogeosciences, 12, 3253-3272, https://doi.org/10.5194/bg-12-3253-2015, 2015.
Delon, C., Galy-Lacaux, C., Serça, D., Personne, E., Mougin, E., Adon, M., Le Dantec, V., Loubet, B., Fensholt, R., and Tagesson, T.: Modelling land-atmosphere daily exchanges of NO, NH3, and CO2 in a semi-arid grazed ecosystem in Senegal, Biogeosciences, 16, 2049-2077, https://doi.org/10.5194/bg-16-2049-2019, 2019.
de Souza Noía Júnior, R., Amaral, G. C., Pezzopane, J. E. M., Fonseca, M. D. S., Câmara da Silva, A. P., and Xavier, T. M. T.: Ecophysiological acclimatization to cyclic water stress in Eucalyptus, J. Forestry Res., 31, 797-806, https://doi.org/10.1007/s11676-019-00926-9, 2020.
Dimobe, K., Kouakou, J. L. N. D., Tondoh, J. E., Zoungrana, B. J.-B., Forkuor, G., and Ouédraogo, K.: Predicting the Potential Impact of Climate Change on Carbon Stock in Semi-Arid West African Savannas, Land, 7, 124, https://doi.org/10.3390/land7040124, 2018.
Diouf, A. A., Brandt, M., Verger, A., Jarroudi, M. E., Djaby, B., Fensholt, R., Ndione, J. A., and Tychon, B.: Fodder Biomass Monitoring in Sahelian Rangelands Using Phenological Metrics from FAPAR Time Series, Remote Sens., 7, 9122-9148, https://doi.org/10.3390/rs70709122, 2015.
Dirnböck, T., Kraus, D., Grote, R., Klatt, S., Kobler, J., Schindlbacher, A., Seidl, R., Thom, D., and Kiese, R.: Substantial understory contribution to the C sink of a European temperate mountain forest landscape, Landscape Ecol., 35, 483-499, https://doi.org/10.1007/s10980-019-00960-2 2020.
Do, F. C., Goudiaby, V. A., Gimenez, O., Diagne, A. L., Diouf, M., Rocheteu, A., and Akpo, L. E.: Environmental influence on canopy phenology in the dry tropics, Forest Ecol. Manage., 215, 319-328, https://doi.org/10.1016/j.foreco.2005.05.022, 2005.
Elberling, B., Fensholt, R., Larsen, L., Petersen, A.-I. S., and Sandholt, I.: Water content and land use history controlling soil CO2 respiration and carbon stock in savanna soil and groundnut fields in semi-arid Senegal, Danish J. Geogr., 103, 47-56, https://doi.org/10.1080/00167223.2003.10649491, 2003.
Epron, D., Nouvellon, Y., Roupsard, O., Mouvondy, W., Mabiala, A., Saint-Andre, L., Joffre, R., Jourdan, C., Bonnefond, J. M., Berbigier, P., and Hamel, O.: Spatial and temporal variations of soil respiration in a Eucalyptus plantation in Congo, Forest Ecol. Manage., 202, 149-160, https://doi.org/10.1016/j.foreco.2004.07.019, 2004.
Farquhar, G. D., Von Caemmerer, S., and Berry, J. A.: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species, Planta, 149, 78-90, https://doi.org/10.1007/BF00386231, 1980.
Faye, B.,Webber, H., Naab, J. B., MacCarthy, D. S., Adam, M., Ewert, F., Lamers, J. P. A., Schleussner, C.-F., Ruane, A., Gessner, U., Hoogenboom, G., Boote, K., Shelia, V., Saeed, F., Wisser, D., Hadir, S., Laux, P., and Gaiser, T.: Impacts of 1.5 versus 2.0C on cereal yields in the West African Sudan Savanna, Environ. Res. Lett., 13, 034014, https://doi.org/10.1088/1748-9326/aaab40, 2018.
February, E. and Higgins, S.: The distribution of tree and grass roots in savannas in relation to soil nitrogen and water, S. Afr. J. Bot., 76, 517-523, https://doi.org/10.1016/j.sajb.2010.04.001, 2010.
Feng, X. and Dietze, M.: Scale dependence in the effects of leaf ecophysiological traits on photosynthesis: Bayesian parameterization of photosynthesis models, New Phytol., 200, 1132-1144, https://doi.org/10.1111/nph.12454, 2013.
Fraser, F. C., Corstanje, R., Deeks, L. K., Harris, J. A., Pawlett, M., Todman, L. C., Whitmore, A. P., and Ritz, K.: On the origin of carbon dioxide released from rewetted soils, Soil Biology and Biochemistry, 101, 1-5, https://doi.org/10.1016/j.soilbio.2016.06.032, 2016.
Fürstenau Togashi, H., Prentice, I. C., Atkin, O. K., Macfarlane, C., Prober, S. M., Bloomfield, K. J., and Evans, B. J.: Thermal acclimation of leaf photosynthetic traits in an evergreen woodland, consistent with the coordination hypothesis, Biogeosciences, 15, 3461-3474, https://doi.org/10.5194/bg-15-3461-2018, 2018.
Gallé, A. and Feller, U.: Changes of photosynthetic traits in beech saplings (Fagus sylvatica) under severe drought stress and during recovery, Physiol. Plant., 131, 412-421, 2007.
Galy-Lacaux, C., Delon, C., Solmon, F., Adon, M., Yoboué, V., Mphepya, J., Pienaar, J. J., Diop, B., Sigha, L., Dungall, L., Akpo, A., Mougin, E., Gardrat, E., and Castera, P.: Dry and Wet Atmospheric Nitrogen Deposition inWest Central Africa, in: Nitrogen Deposition, Critical Loads and Biodiversity, edited by: Sutton, M., Mason, K., Sheppard, L., Sverdrup, H., Haeuber, R., and Hicks, W., Springer, Dordrecht, 2014.
Gash, J. H. C., Lloyd, C. R., and Lachaud, G.: Estimating sparse forest rainfall interception with an analytical model, J. Hydrol., 170, 79-86, https://doi.org/10.1016/0022-1694(95)02697-N, 1995.
Geerling, C.: The status of the woody species of the Sudan and Sahel zones of West Africa, Forest Ecol. Manage., 13, 247-255, https://doi.org/10.1016/0378-1127(85)90038-6, 1985.
Gessner, U., Niklaus, M., Kuenzer, C., and Dech, S.: Intercomparison of Leaf Area Index Products for a Gradient of Sub-Humid to Arid Environments inWest Africa, Remote Sens., 5, 1235-1257, https://doi.org/10.3390/rs5031235, 2013.
Gleason, S. M., Wiggans, D. R., Bliss, C. A., Comas, L. H., Cooper, M., DeJonge, K. C., Young, J. S., and Zhang, H.: Coordinated decline in photosynthesis and hydraulic conductance during drought stress in Zea mays, Flora, 227, 1-9, https://doi.org/10.1016/j.flora.2016.11.017, 2017.
Groenendijk, M., Dolman, A. J., van der Molen, M. K., Leuning, R., Arneth, A., Delpierre, N., Gash, J. H. C., Lindroth, A., Richardson, A. D., Verbeeck, H., and Wohlfahrt, G.: Assessing parameter variability in a photosynthesis model within and between plant functional types using global Fluxnet eddy covariance data, Agric. Forest Meteorol., 151, 22-38, https://doi.org/10.1016/j.agrformet.2010.08.013, 2011.
Grossiord, C., Sevanto, S., Adams, H. D., Collins, A. D., Dickman, L. T., McBranch, N., Michaletz, S. T., Stockton, E. A., Vigil, M., and McDowell, N. G.: Precipitation, not air temperature, drives functional responses of trees in semi-arid ecosystems, J. Ecol., 105, 163-175, https://doi.org/10.1111/1365-2745.12662, 2017.
Grote, R.: Integrating dynamic morphological properties into forest growth modeling. II. Allocation and mortality, Forest Ecol. Manage., 111, 193-210, https://doi.org/10.1016/S0378-1127(98)00328-4, 1998.
Grote, R.: Sensitivity of volatile monoterpene emission to changes in canopy structure-A model based exercise with a process-based emission model, New Phytol., 173, 550-561, https://doi.org/10.1111/j.1469-8137.2006.01946.x, 2007.
Grote, R., Lavoir, A. V., Rambal, S., Staudt, M., Zimmer, I., and Schnitzler, J.-P.: Modelling the drought impact on monoterpene fluxes from an evergreen Mediterranean forest canopy, Oecologia, 160, 213-223, https://doi.org/10.1007/s00442-009-1298-9, 2009a.
Grote, R., Lehmann, E., Brümmer, C., Brüggemann, N., Szarzynski, J., and Kunstmann, H.: Modelling and observation of biosphere-atmosphere interactions in natural savannah in Burkina Faso, West Africa, Phys. Chem. Earth, 34, 251-260, https://doi.org/10.1016/j.pce.2008.05.003, 2009b.
Grote, R., Kiese, R., Grünwald, T., Ourcival, J.-M., and Granier, A.: Modelling forest carbon balances considering tree mortality and removal, Agric. Forest Meteorol., 151, 179-190, https://doi.org/10.1016/j.agrformet.2010.10.002, 2011a.
Grote, R., Korhonen, J., and Mammarella, I.: Challenges for evaluating process-based models of gas exchange at forest sites with fetches of various species, For. Syst., 20, 389-406, https://doi.org/10.5424/fs/20112003-11084, 2011b.
Grote, R., Kraus, D., Weis, W., Ettl, R., and Göttlein, A.: Dynamic coupling of allometric ratios to a process-based forest growth model for estimating the impacts of stand density changes, Forestry, 93, 601-615, https://doi.org/10.1093/forestry/cpaa002, 2020.
Guenther, A., Otter, L., Zimmerman, P., Greenberg, J., Scholes, R., and Scholes, M.: Biogenic hydrocarbon emissions from southern Africa savannas, J. Geophys. Res., 101, 25859-25865, https://doi.org/10.1029/96JD02597, 1996.
Haas, E., Klatt, S., Fröhlich, A., Werner, C., Kiese, R., Grote, R., and Butterbach-Bahl, K.: LandscapeDNDC: A process model for simulation of biosphere-atmosphere-hydrosphere exchange processes at site and regional scale, Landscape Ecol., 28, 615-636, https://doi.org/10.1007/s10980-012-9772-x, 2013.
Hartley, A. J., Parker, D. J., Garcia-Carreras, L., and Webster, S.: Simulation of vegetation feedbacks on local and regional scale precipitation in West Africa, Agric. Forest Meteorol., 222, 59-70, https://doi.org/10.1016/j.agrformet.2016.03.001, 2016.
Hiernaux, P. and Ayantunde, A. A.: The Fakara: a semi-arid agroecosystem under stress. Report of research activities, first phase (July 2002-June 2004) of the DMP-GEF Program ILRI, Nairobi (Kenya), GEF/2711-02-4516, 95, 2004.
Hiernaux, P., Mougin, E., Diarra, L., Soumaguel, N., Lavenu, F., Tracol, Y., and Diawara, M. O.: Sahelian rangeland response to changes in rainfall over two decades in the Gourma region, Mali, J. Hydrol., 375, 114-127, https://doi.org/10.1016/j.jhydrol.2008.11.005, 2009.
Holá, D., Beneŝová, M., Honnerová, J., Hnilicka, F., Rothová, O., Kocová, M., and Hnilicková, H.: The evaluation of photosynthetic parameters in maize inbred lines subjected to water deficiency: Can these parameters be used for the prediction of performance of hybrid progeny?, Photosynthetica, 48, 545-558, https://doi.org/10.1007/s11099-010-0072-x, 2010.
Ivanov, V. Y., Bras, R. L., and Vivoni, E. R.: Vegetation-hydrology dynamics in complex terrain of semiarid areas: 1. A mechanistic approach to modeling dynamic feedbacks, Water Resour. Res., 44, W03429, https://doi.org/10.1029/2006WR005588, 2008.
Jolly, W. M. and Running, S. W.: Effects of precipitation and soil water potential on drought deciduous phenology in the Kalahari, Glob. Change Biol., 10, 303-308, https://doi.org/10.1046/j.1365-2486.2003.00701.x, 2004.
Kahiu, M. N. and Hanan, N. P.: Estimation of Woody and Herbaceous Leaf Area Index in Sub-Saharan Africa Using MODIS Data, J. Geophys. Res.-Biogeo., 123, 3-17, https://doi.org/10.1002/2017JG004105, 2018.
Kalariya, K. A., Singh, A. L., Goswami, N., Mehta, D., Mahatma, M. K., Ajay, B. C., Chakraborty, K., Zala, P. V., Chaudhary, V., and Patel, C. B.: Photosynthetic characteristics of peanut genotypes under excess and deficit irrigation during summer, Physiol. Mol. Biol. Plants, 21, 317-327, https://doi.org/10.1007/s12298-015-0300-8, 2015.
Kaptue Tchuente, A. T., Roujean, J. L., and Faroux, S.: ECOCLIMAP-II: An ecosystem classification and land surface parameters database of Western Africa at 1 km resolution for the African Monsoon Multidisciplinary Analysis (AMMA) project, Remote Sens. Environ., 114, 961-976, https://doi.org/10.1016/j.rse.2009.12.008, 2010.
Kattge, J. and Knorr, W.: Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species, Plant Cell Environ., 30, 1176-1190, https://doi.org/10.1111/j.1365-3040.2007.01690.x, 2007.
Kebbas, S., Lutts, S., and Aid, F.: Effect of drought stress on the photosynthesis of Acacia tortilis subsp. raddiana at the young seedling stage, Photosynthetica, 53, 288-298, https://doi.org/10.1007/s11099-015-0113-6, 2015.
Ker, A.: Farming Systems of the African Savanna, International Development Research Centre, Ottawa, Canada, 166 pp., 1995.
Kgope, B. S. and Musil, C. F.: Differential photosynthetic responses of broad-and fine-leafed savanna trees to elevated temperatures, S. Afr. J. Bot., 70, 760-766, https://doi.org/10.1016/S0254-6299(15)30177-0, 2004.
Kiese, R., Heinzeller, C., Werner, C., Wochele, S., Grote, R., and Butterbach-Bahl, K.: Quantification of nitrate leaching from German forest ecosystems by use of a process oriented biogeochemical model, Environ. Pollut., 159, 3204-3214, https://doi.org/10.1016/j.envpol.2011.05.004, 2011.
Kim, J. and Verma, S. B.: Modeling canopy photosynthesis: scaling up from a leaf to canopy in a temperate grassland ecosystem, Agric. Forest Meteorol., 57, 187-208, https://doi.org/10.1016/0168-1923(91)90086-6, 1991.
Knauer, J., Werner, C., and Zaehle, S.: Evaluating stomatal models and their atmospheric drought response in a land surface scheme: A multibiome analysis, J. Geophys. Res.-Biogeo., 120, 1894-1911, https://doi.org/10.1002/2015jg003114, 2015.
Körner, C., Scheel, J., and Bauer, H.: Maximum leaf diffusive conductance in vascular plants, Photosynthetica, 13, 45-82, 1979.
Kothavala, Z., Arain, M. A., Black, T. A., and Verseghy, D.: The simulation of energy, water vapor and carbon dioxide fluxes over common crops by the Canadian Land Surface Scheme (CLASS), Agric. Forest Meteorol., 133, 89-108, https://doi.org/10.1016/j.agrformet.2005.08.007, 2005.
Kraus, D., Weller, S., Klatt, S., Haas, E., Wassmann, R., Kiese, R., and Butterbach-Bahl, K.: A new LandscapeDNDC biogeochemical module to predict CH4 and N2O emissions from lowland rice and upland cropping systems, Plant Soil, 386, 125-149, https://doi.org/10.1007/s11104-014-2255-x, 2015.
Kraus, D., Weller, S., Klatt, S., Santabárbara, I., Haas, E., Wassmann, R., Werner, C., Kiese, R., and Butterbach-Bahl, K.: How well can we assess impacts of agricultural land management changes on the total greenhouse gas balance (CO2, CH4 and N2O) of tropical rice-cropping systems with a biogeochemical model?, Agr. Ecosyst. Environ., 224, 104-115, https://doi.org/10.1016/j.agee.2016.03.037, 2016.
Kucharik, C. J., Barford, C. C., El Maayar, M., Wofsy, S. C., Monson, R. K., and Baldocchi, D. D.: A multiyear evaluation of a Dynamic Global Vegetation Model at three AmeriFlux forest sites: Vegetation structure, phenology, soil temperature, and CO2 and H2O vapor exchange, Ecol. Modelling, 196, 1-31, https://doi.org/10.1016/j.ecolmodel.2005.11.031, 2006.
Leuning, R.: A critical appraisal of a combined stomatalphotosynthesis model for C3 plants, Plant Cell Environ., 18, 339-355, https://doi.org/10.1111/j.1365-3040.1995.tb00370.x, 1995.
Li, C., Frolking, S., and Frolking, T. A.: A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and Sensitivity, J. Geophys. Res., 97, 9759-9776, https://doi.org/10.1029/92JD00509, 1992.
Liebermann, R., Breuer, L., Houska, T., Kraus, D., Moser, G., and Kraft, P.: Simulating Long-Term Development of Greenhouse Gas Emissions, Plant Biomass, and Soil Moisture of a Temperate Grassland Ecosystem under Elevated Atmospheric CO2, Agronomy, 10, 50, https://doi.org/10.3390/agronomy10010050, 2020.
Lindauer, M., Schmid, H. P., Grote, R., Mauder, M., Steinbrecher, R., and Wolpert, B.: Net ecosystem exchange over a noncleared wind-throw-disturbed upland spruce forest-measurements and simulations Agric. Forest Meteorol., 197, 219-234, https://doi.org/10.1016/j.agrformet.2014.07.005, 2014.
Livesley, S. J., Grover, S., Hutley, L. B., Jamali, H., Butterbach-Bahl, K., Fest, B., Beringer, J., and Arndt, S. K.: Seasonal variation and fire effects on CH4, N2O and CO2 exchange in savanna soils of northern Australia, Agric. Forest Meteorol., 151, 1440-1452, https://doi.org/10.1016/j.agrformet.2011.02.001, 2011.
Loustau, D., Berbigier, P., Granier, A., and Moussa, F. E. H.: Interception loss, throughfall and stemflow in a maritime pine stand. I. Variability of throughfall and stemflow beneath the pine canopy, J. Hydrol., 138, 449-467, https://doi.org/10.1016/0022-1694(92)90130-N, 1992.
Mamadou, O.: Etude des flux d'Evapotranspiration en climat soudanien: comportement comparé de deux couverts végétaux au Bénin, Université de Grenoble (France) et Université d'Abomey-Calavi (Bénin), Abomey-Calavi, 2014.
Martin, M. J., Stirling, C. M., Humphries, S. W., and Long, S. P.: A process-based model to predict the effects of climatic change on leaf isoprene emission rates, Ecol. Model., 131, 161-174, https://doi.org/10.1016/S0304-3800(00)00258-1, 2000.
Massad, R.-S., Tuzet, A., and Bethenod, O.: The effect of temperature on C4-type leaf photosynthesis parameters, Plant Cell Environ., 30, 1191-1204, https://doi.org/10.1111/j.1365-3040.2007.01691.x, 2007.
Massad, R. S., Lathière, J., Strada, S., Perrin, M., Personne, E., Stéfanon, M., Stella, P., Szopa, S., and de Noblet-Ducoudré, N.: Reviews and syntheses: influences of landscape structure and land uses on local to regional climate and air quality, Biogeosciences, 16, 2369-2408, https://doi.org/10.5194/bg-16-2369-2019, 2019.
Merbold, L., Ardö, J., Arneth, A., Scholes, R. J., Nouvellon, Y., de Grandcourt, A., Archibald, S., Bonnefond, J. M., Boulain, N., Brueggemann, N., Bruemmer, C., Cappelaere, B., Ceschia, E., El-Khidir, H. A. M., El-Tahir, B. A., Falk, U., Lloyd, J., Kergoat, L., Le Dantec, V., Mougin, E., Muchinda, M., Mukelabai, M. M., Ramier, D., Roupsard, O., Timouk, F., Veenendaal, E. M., and Kutsch, W. L.: Precipitation as driver of carbon fluxes in 11 African ecosystems, Biogeosciences, 6, 1027-1041, https://doi.org/10.5194/bg-6-1027-2009, 2009.
Mougin, E., Lo Seena, D., Rambal, S., Gaston, A., and Hiernaux, P.: A regional Sahelian grassland model to be coupled with multispectral satellite data. I: Model description and validation, Remote. Sens. Environ., 52, 181-193, https://doi.org/10.1016/0034-4257(94)00126-8, 1995.
Mougin, E., Hiernaux, P., Kergoat, L., Grippa, M., de Rosnay, P., Timouk, F., Le Dantec, V., Demarez, V., Lavenu, F., Arjounin, M., Lebel, T., Soumaguel, N., Ceschia, E., Mougenot, B., Baup, F., Frappart, F., Frison, P. L., Gardelle, J., Gruhier, C., Jarlan, L., Mangiarotti, S., Sanou, B., Tracol, Y., Guichard, F., Trichon, V., Diarra, L., Soumaré, A., Koité, M., Dembélé, F., Lloyd, C., Hanan, N. P., Damesin, C., Delon, C., Serça, D., Galy-Lacaux, C., Seghieri, J., Becerra, S., Dia, H., Gangneron, F., and Mazzega, P.: The AMMA-CATCH Gourma observatory site in Mali: Relating climatic variations to changes in vegetation, surface hydrology, fluxes and natural resources, J. Hydrol., 375, 14-33, https://doi.org/10.1016/j.jhydrol.2009.06.045, 2009.
Mougin, E., Diawara, M. O., Soumaguel, N., Maïga, A. A., Demarez, V., Hiernaux, P., Grippa, M., Chaffard, V., and Ba, A.: A leaf area index data set acquired in Sahelian rangelands of Gourma in Mali over the 2005-2017 period, Earth Syst. Sci. Data, 11, 675-686, https://doi.org/10.5194/essd-11-675-2019, 2019.
Myneni, R., Knyazikhin, Y., and Park, T.: MCD15A3H MODIS/Terra+Aqua Leaf Area Index/FPAR 4-day L4 Global 500m SIN Grid V006 [data set], NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MODIS/MCD15A3H.006 (last access: 16 June 2021), 2015.
Odekunle, T. O., Andrew, O., and Aremu, S. O.: Towards a wetter Sudano-Sahelian ecological zone in twenty-first century Nigeria, Weather, 63, 66-70, https://doi.org/10.1002/wea.172, 2008.
Pallas, J. E. and Samish, Y. B.: Photosynthetic response of peanut, Crop Sci., 14, 478-482, https://doi.org/10.2135/cropsci1974.0011183X001400030042x, 1974.
Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, Y.-W., Poindexter, C., Chen, J., Elbashandy, A., Humphrey, M., Isaac, P., Polidori, D., Ribeca, A., Ingen, C., Zhang, L., Amiro, B., Ammann, C., Arain, M., and Ardö, J.: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data, Sci. Data, 7, 225, https://doi.org/10.1038/s41597-020-0534-3, 2020.
Pereira, A. R. and Pruitt, W. O.: Adaptation of the Thornthwaite scheme for estimating daily reference evapotranspiration, Agric. Water Manage., 66, 251-257, https://doi.org/10.1016/j.agwat.2003.11.003, 2004.
Pielke, R. A., Pitman, A., Niyogi, D., Mahmood, R., McAlpine, C., Hossain, F., Goldewijk, K. K., Nair, U., Betts, R., Fall, S., Reichstein, M., Kabat, P., and de Noblet, N.: Land use/land cover changes and climate: modeling analysis and observational evidence, Wiley Interdisciplinary Reviews: Climate Change, 2, 828-850, https://doi.org/10.1002/wcc.144, 2011.
Pitman, A. J.: The evolution of, and revolution in, land surface schemes designed for climate models, Int. J. Climatol., 23, 479-510, https://doi.org/10.1002/joc.893, 2003.
Quansah, E., Mauder, M., Balogun, A. A., Amekudzi, L. K., Hingerl, L., Bliefernicht, J., and Kunstmann, H.: Carbon dioxide fluxes from contrasting ecosystems in the Sudanian Savanna in West Africa, Carbon Balance Manag., 10, 1-17, https://doi.org/10.1186/s13021-014-0011-4, 2015.
Quenum, G. M. L. D., Klutse, N. A. B., Dieng, D., Laux, P., Arnault, J., Kodja, J. D., and Oguntunde, P. G.: Identification of Potential Drought Areas in West Africa Under Climate Change and Variability, Earth Syst. Environ., 3, 429-444, https://doi.org/10.1007/s41748-019-00133-w, 2019.
Rahimi, J., Ago, E. E., Ayantunde, A., Bogaert, J., Butterbach-Bahl, K., Cappelaere, B., Demarty, J., Diouf, A. A., Falk, U., Haas, E., Hiernaux, P., Kraus, D., Roupsard, O., Scheer, C., Srivastava, A. K., Tagesson, T., and Grote, R.: Modelling Gas Exchange and Biomass Production inWest African Sahelian and Sudanian Ecological Zones. Karlsruhe Institute of Technology (KIT) [data set], https://doi.org/10.35097/437, 2021.
Roupsard, O., Audebert, A., Ndour, A. P., Clermont-Dauphin, C., Agbohessou, Y., Sanou, J., Koala, J., Faye, E., Sambakhe, D., Jourdan, C., le Maire, G., Tall, L., Sanogo, D., Seghieri, J., Cournac, L., and Leroux, L.: How far does the tree affect the crop in agroforestry? New spatial analysis methods in a Faidherbia parkland, Agr. Ecosyst. Environ., 296, 106928, https://doi.org/10.1016/j.agee.2020.106928, 2020.
Running, S. W. and Coughlan, J. C.: A general model of forest ecosystem processes for regional applications. I. Hydrologic balance, canopy gas exchange and primary production processes, Ecol. Model., 42, 125-154, https://doi.org/10.1016/0304-3800(88)90112-3, 1988.
Saleska, S. R., Miller, S. D., Matross, D. M., Goulden, M. L., Wofsy, S. C., da Rocha, H. R., de Camargo, P. B., Crill, P., Daube, B. C., de Freitas, H. C., Hutyra, L., Keller, M., Kirchhoff, V., Menton, M., Munger, J. W., Pyle, E. H., Rice, A. H., and Silva, H.: Carbon in amazon forests: Unexpected seasonal fluxes and disturbance-induced losses, Science, 302, 1554-1557, https://doi.org/10.1126/science.1091165, 2003.
Scheiter, S. and Higgins, S. I.: Impacts of climate change on the vegetation of Africa: an adaptive dynamic vegetation modelling approach, Glob. Change Biol., 15, 2224-2246, https://doi.org/10.1111/j.1365-2486.2008.01838.x, 2009.
Scholes, R. J. and Hall, D. O.: The carbon budget of tropical savannas, woodlands and grasslands, in: Global change: effects on coniferous forests and grasslands, edited by: Breymeyer, A. I., Hall, D. O., Melillo, J. M., and Ågren, G. I., Scope, John Wiley and Sons, Chichester, 69-100, 1996.
Sellers, P. J., Randall, D. A., Collatz, G. J., Berry, J. A., Field, C. B., Dazlich, D. A., Zhang, C., Collelo, G. D., and Bounoua, L.: A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: model formulation, J. Climate, 9, 676-705, https://doi.org/10.1175/1520-0442(1996)009<0676:ARLSPF>2.0.CO;2, 1996.
Setterfield, S. A., Clifton, P. J., Hutley, L. B., Rossiter-Rachor, N. A., and Douglas, M. M.: Exotic grass invasion alters microsite conditions limiting woody recruitment potential in an Australian savanna, Sci. Rep.-UK, 8, 6628-6628, https://doi.org/10.1038/s41598-018-24704-5, 2018.
Sibret, T.: The Sahelian Drylands under Pressure: Studying the Impact of Environmental Factors on Vegetation in Dahra, Senegal, Master of Science in Bioscience Engineering, Ghent University, Ghent, 113 pp., 2018.
Simioni, G., Le Roux, X., Gignoux, J., and Sinoquet, H.: Treegrass: a 3D, process-based model for simulating plant interactions in tree-grass ecosystems, Ecol. Model., 131, 47-63, https://doi.org/10.1016/S0304-3800(00)00243-X, 2000.
Sjöström, M., Ardö, J., Arneth, A., Boulain, N., Cappelaere, B., Eklundh, L., de Grandcourt, A., Kutsch, W. L., Merbold, L., Nouvellon, Y., Scholes, R. J., Schubert, P., Seaquist, J., and Veenendaal, E. M.: Exploring the potential of MODIS EVI for modeling gross primary production across African ecosystems, Remote. Sens. Environ., 115, 1081-1089, https://doi.org/10.1016/j.rse.2010.12.013, 2011.
Sjöström, M., Zhao, M., Archibald, S., Arneth, A., Cappelaere, B., Falk, U., de Grandcourt, A., Hanan, N., Kergoat, L., Kutsch, W., Merbold, L., Mougin, E., Nickless, A., Nouvellon, Y., Scholes, R. J., Veenendaal, E. M., and Ardö, J.: Evaluation of MODIS gross primary productivity for Africa using eddy covariance data, Remote. Sens. Environ., 131, 275-286, https://doi.org/10.1016/j.rse.2012.12.023, 2013.
Snyman, H. A.: Rangeland degradation in a semi-arid South Africa-I: influence on seasonal root distribution, root/shoot ratios and water-use efficiency, J. Arid Environ., 60, 457-481, https://doi.org/10.1016/j.jaridenv.2004.06.006, 2005.
Sobamowo, J. O.: Effect of harvesting dates and fertilizer application on cassava productivity in rainforest and guinea savanna agroecological zones of Nigeria, PhD, University of Cape Coast, Ghana, 2016.
Sonawane, B. V., Sharwood, R. E., von Caemmerer, S., Whitney, S. M., and Ghannoum, O.: Short-term thermal photosynthetic responses of C4 grasses are independent of the biochemical subtype, J. Exp. Bot., 68, 5583-5597, https://doi.org/10.1093/jxb/erx350, 2017.
Sotelo Montes, C., Weber, J. C., Silva, D. A., Andrade, C., Muñiz, G. B., Garcia, R. A., and Kalinganire, A.: Growth and fuelwood properties of five tree and shrub species in the Sahelian and Sudanian ecozones of Mali: relationships with mean annual rainfall and geographical coordinates, New Forests, 45, 179-197, https://doi.org/10.1007/s11056-013-9401-9, 2014.
Tagesson, T., Fensholt, R., Guiro, I., Rasmussen, M. O., Huber, S., Mbow, C., Garcia, M., Horion, S., Sandholt, I., Holm-Rasmussen, B., Göttsche, F. M., Ridler, M.-E., Olén, N., Lundegard Olsen, J., Ehammer, A., Madsen, M., Olesen, F. S., and Ardö, J.: Ecosystem properties of semiarid savanna grassland in West Africa and its relationship with environmental variability, Glob. Change Biol., 21, 250-264, https://doi.org/10.1111/gcb.12734, 2015.
Tagesson, T., Ardö, J., Guiro, I., Cropley, F., Mbow, C., Horion, S., Ehammer, A., Mougin, E., Delon, C., Corinne, G.-L., and Fensholt, R.: Very high CO2 exchange fluxes at the peak of the rainy season in a West African grazed semi-arid savanna ecosystem, Geografisk Tidsskrift-Danish J. Geography, 116, 1-17, https://doi.org/10.1080/00167223.2016.1178072, 2016.
Tews, J. and Jeltsch, F.: Modelling the impact of climate change on woody plant population dynamics in South African savanna, BMC Ecology, 4, 1-12, https://doi.org/10.1186/1472-6785-4-17, 2004.
Tews, J., Esther, A., Milton, S. J., and Jeltsch, F.: Linking a population model with an ecosystem model: Assessing the impact of land use and climate change on savanna shrub cover dynamics, Ecol. Model., 195, 219-228, https://doi.org/10.1016/j.ecolmodel.2005.11.025, 2006.
Thornley, J. H. M.: Instantaneous canopy photosynthesis: Analytical expressions for sun and shade leaves based on exponential light decay down the canopy and an acclimated nonrectangular hyperbola for leaf photosynthesis, Ann. Bot., 89, 451-458, https://doi.org/10.1093/aob/mcf071, 2002.
Thornley, J. H. M. and Cannell, M. G. R.: Modelling the components of plant respiration: Representation and realism, Ann. Bot., 85, 55-67, https://doi.org/10.1006/anbo.1999.0997, 2000.
Thornthwaite, C. W.: An approach toward a rational classification of climate, Geogr. Rev., 38, 55, https://doi.org/10.2307/210739, 1948.
Timouk, F., Kergoat, L., Mougin, E., Lloyd, C. R., Ceschia, E., Cohard, J. M., Rosnay, P. d., Hiernaux, P., Demarez, V., and Taylor, C. M.: Response of surface energy balance to water regime and vegetation development in a Sahelian landscape, J. Hydrol., 375, 178-189, https://doi.org/10.1016/j.jhydrol.2009.04.022, 2009.
Ullmann, I.: Stomatal conductance and transpiration of Acacia under field conditions: similarities and differences between leaves and phyllodes, Trees-Struct. Funct., 3, 45-56, https://doi.org/10.1007/BF00202400, 1989.
Ünlü, M. and Steduto, P.: Comparison of Photosynthetic Water use Efficiency of Sweet Sorghum at Canopy and Leaf Scales, Turkish Journal of Agriculture and Forestry, 24, 519-526, 2000.
Velluet, C., Demarty, J., Cappelaere, B., Braud, I., Issoufou, H. B.-A., Boulain, N., Ramier, D., Mainassara, I., Charvet, G., Boucher, M., Chazarin, J.-P., Oï, M., Yahou, H., Maidaji, B., Arpin-Pont, F., Benarrosh, N., Mahamane, A., Nazoumou, Y., Favreau, G., and Seghieri, J.: Building a field-and model-based climatology of local water and energy cycles in the cultivated Sahel-annual budgets and seasonality, Hydrol. Earth Syst. Sci., 18, 5001-5024, https://doi.org/10.5194/hess-18-5001-2014, 2014.
Vico, G. and Porporato, A.: Modelling C3 and C4 photosynthesis under water-stressed conditions, Plant Soil, 313, 187-203, https://doi.org/10.1007/s11104-008-9691-4, 2008.
Vitasse, Y., Francois, C., Delpierre, N., Dufrene, E., Kremer, A., Chuine, I., and Delzon, S.: Assessing the effects of climate change on the phenology of European temperate trees, Agric. Forest Meteorol., 151, 969-980, 2011.
Vitkauskaite, G. and Venskaityte, L.: Differences between C3 (Hordeum vulgare L.) and C4 (Panicum miliaceum L.) plants with respect to their resistance to water deficit, Ẑemdirbyste (Agriculture), 98, 349-356, 2011.
Von Caemmerer, S.: Biochemical models of leaf photosynthesis, Technicques in Plant Sciences, CSIRO, Collingwood VIC 3066, Australia, 2000.
Vu, J. C. V.: Acclimation of peanut (Arachis hypogaea L.) leaf photosynthesis to elevated growth CO2 and temperature, Environ. Exp. Bot., 53, 85-95, https://doi.org/10.1016/j.envexpbot.2004.03.006, 2005.
Werner, C., Haas, E., Grote, R., Gauder, M., Graeff-Hönninger, S., Claupein, W., and Butterbach-Bahl, K.: Biomass production potential from Populus short rotation systems in Romania, GCB Bioenergy, 4, 642-653, https://doi.org/10.1111/j.1757-1707.2012.01180.x, 2012.
Wesolowski, T. and Rowinski, P.: Timing of bud burst and treeleaf development in a multispecies temperate forest, Forest Ecol. Manage., 237, 387-393, 2006.
Whitley, R., Beringer, J., Hutley, L. B., Abramowitz, G., De Kauwe, M. G., Duursma, R., Evans, B., Haverd, V., Li, L., Ryu, Y., Smith, B., Wang, Y.-P., Williams, M., and Yu, Q.: A model inter-comparison study to examine limiting factors in modelling Australian tropical savannas, Biogeosciences, 13, 3245-3265, https://doi.org/10.5194/bg-13-3245-2016, 2016.
Whitley, R., Beringer, J., Hutley, L. B., Abramowitz, G., De Kauwe, M. G., Evans, B., Haverd, V., Li, L., Moore, C., Ryu, Y., Scheiter, S., Schymanski, S. J., Smith, B., Wang, Y.-P., Williams, M., and Yu, Q.: Challenges and opportunities in land surface modelling of savanna ecosystems, Biogeosciences, 14, 4711-4732, https://doi.org/10.5194/bg-14-4711-2017, 2017.
Yao, N. g. R. and Goué, B.: Water use efficiency of a cassava crop as affected by soil water balance, Agric. Forest Meteorol., 61, 187-203, https://doi.org/10.1016/0168-1923(92)90049-A, 1992.
Yu, G.-R., Zhuang, J., and Yu, Z.-L.: An attempt to establish a synthetic model of photosynthesis-transpiration based on stomatal behavior for maize and soybean plants grown in field, J. Plant Physiol., 158, 861-874, https://doi.org/10.1078/0176-1617-00177, 2001.
Yuan, W., Zhou, G., Wang, Y., Han, X., and Wang, Y.: Simulating phenological characteristics of two dominant grass species in a semi-arid steppe ecosystem, Ecol. Res., 22, 784-791, https://doi.org/10.1007/s11284-006-0318-z, 2007.