Distinguishing original and non-original stands at the zhanjiang mangrove national nature reserve (P.r. china): Remote sensing and gis for conservation and ecological research
Durango-Cordero, Juan; Satyanarayana, Behara; Chan, Jonathan Cheung-Waiet al.
GIS; Original forest; Remote sensing; Spatial distribution; Vegetation structure; Distribution patterns; Indo-West Pacific; Methodological frameworks; Remote sensing and GIS; Remote sensing data; Species composition; Structural parameter; Vegetation dynamics; Earth and Planetary Sciences (all); General Earth and Planetary Sciences
Abstract :
[en] The present research developed a novel methodological framework to differentiate natural mangrove stands (i.e., original), from stands which were planted and stands naturally established after interaction between planted and non-planted stands (e.g., through pollination, i.e., non-original). Ground-truth and remote sensing data were collected for Zhanjiang Mangrove National Nature Reserve (ZMNNR) in P.R. China. First, satellite images of Corona (1967) and GeoEye-1 (2009) were overlaid to identify original (1967) and non-original (2009) mangrove stands. Second, in both stands a total of 75 in situ plots (25 m2) were measured for ground-truthing of tree structural parameters including height, density, basal area and Complexity Index (CI). From temporal satellite data, we identify 236.12 ha of original mangrove and 567.88 ha of non-original mangrove in the reserve. Averaged measurements of the original mangrove stands, i.e., stem density (1164 nos. 0.1 ha−1), basal area (90.3 m2 0.1 ha−1) and CI (100.59), indicated that they were in a state of maturity and less disturbed compared to the non-original mangroves (density, 1241 nos. 0.1 ha−1; basal area, 4.92 m2 0.1 ha−1 and CI, 55.65). The Kruskal–Wallis test showed significant differentiation between the original and non-original mangrove tree structural parameters: Kandelia obovata’s density, X2 = 34.78, d.f. = 1, p = 0.001; basal area, X2 = 108.15, d.f. = 1, p = 0.001; Rizhopora stylosa’s density, X2 = 64.03, d.f. = 1, p = 0.001; basal area, X2 = 117.96, d.f. = 1, p = 0.001. The latter is also evident from the clustering plots generated from the Principal Component Analysis (PCA). Vegetation dynamics at the ZMNNR also enabled us to compare the species composition and distribution patterns with other Indo-West Pacific regions. Overall, the present study not only highlights the advantage of >50 years old satellite data but also provide a benchmark for future ecological research, conservation and management of the ZMNNR.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Durango-Cordero, Juan; Research Center for the Territory and Sustainable Habitat, Universidad Tecnológica Indoamérica, Machalay Sabanilla, Quito, Ecuador ; Facultad de Arquitectura, Artes y Diseño, Universidad Tecnológica Indoamérica, Ambato, Ecuador ; Ecology & Biodiversity, Laboratory of Plant Biology and Nature Management, Vrije Universiteit Brussel—VUB, Brussels, Belgium
Satyanarayana, Behara; Mangrove Research Unit (MARU), Institute of Oceanography and Environment (INOS), Universiti Malaysia Terengganu—UMT, Kuala Terengganu Terengganu, Malaysia ; Laboratory of Systems Ecology and Resource Management, Université Libre de Bruxelles-ULB, Brussels, Belgium
Chan, Jonathan Cheung-Wai ; Department of Electronics and Informatics, Vrije Universiteit Brussel—VUB, Brussels, Belgium
Bogaert, Jan ; Université de Liège - ULiège > Département GxABT > Biodiversité et Paysage
Dahdouh-Guebas, Farid ; Ecology & Biodiversity, Laboratory of Plant Biology and Nature Management, Vrije Universiteit Brussel—VUB, Brussels, Belgium ; Laboratory of Systems Ecology and Resource Management, Université Libre de Bruxelles-ULB, Brussels, Belgium
Language :
English
Title :
Distinguishing original and non-original stands at the zhanjiang mangrove national nature reserve (P.r. china): Remote sensing and gis for conservation and ecological research
Funding: J.D.-C. was supported by the VLIR scholarship. This research was funded by the F.R.S.-F.N.R.S. Fonds de la Recherche Scientifique, Brussels, Belgium (Contract N◦ 2.4532.09, and F.4508.11).
Dahdouh-Guebas, F.; Ajonina, G.N.; Amir, A.A.; Andradi-Brown, D.A.; Aziz, I.; Balke, T.; Barbier, E.B.; Cannicci, S.; Cragg, S.M.; Cunha-Lignon, M.; et al. Public Perceptions of Mangrove Forests Matter for Their Conservation. Front. Mar. Sci. 2020, 7, 901. [CrossRef]
Del Valle, A.; Eriksson, M.; Ishizawa, O.A.; Miranda, J.J. Mangroves protect coastal economic activity from hurricanes. Proc. Natl. Acad. Sci. USA 2020, 117, 265–270. [CrossRef]
Lee, S.Y.; Primavera, J.H.; Dahdouh-Guebas, F.; Mckee, K.; Bosire, J.O.; Cannicci, S.; Diele, K.; Fromard, F.; Koedam, N.; Marchand, C.; et al. Ecological role and services of tropical mangrove ecosystems: A reassessment. Glob. Ecol. Biogeogr. 2014, 23, 726–743. [CrossRef]
Cohen, R.; Kaino, J.; Okello, J.A.; Bosire, J.O.; Kairo, J.G.; Huxham, M.; Mencuccini, M. Propagating uncertainty to estimates of above-ground biomass for Kenyan mangroves: A scaling procedure from tree to landscape level. For. Ecol. Manag. 2013, 310, 968–982. [CrossRef]
Sasmito, S.D.; Kuzyakov, Y.; Lubis, A.A.; Murdiyarso, D.; Hutley, L.B.; Bachri, S.; Friess, D.A.; Martius, C.; Borchard, N. Organic carbon burial and sources in soils of coastal mudflat and mangrove ecosystems. Catena 2020, 187, 104414. [CrossRef]
Ashton, E.C.; Macintosh, D.J. Preliminary assessment of the plant diversity and community ecology of the Sematan mangrove forest, Sarawak, Malaysia. For. Ecol. Manag. 2002, 166, 111–129. [CrossRef]
Bell, A.M.; Duke, N.C. Effects of Photosystem II inhibiting herbicides on mangroves—Preliminary toxicology trials. Mar. Pollut. Bull. 2005, 51, 297–307. [CrossRef]
Wolswijk, G.; Satyanarayana, B.; Dung, L.Q.; Siau, Y.F.; Ali, A.N.B.; Saliu, I.S.; Fisol, M.A.B.; Gonnelli, C.; Dahdouh-Guebas, F. Distribution of mercury in sediments, plant and animal tissues in Matang Mangrove Forest Reserve, Malaysia. J. Hazard. Mater. 2020, 387, 121665. [CrossRef]
FAO Mangrove Ecosystem Restoration and Management. Available online: http://www.fao.org/sustainable-forest-managemen t/toolbox/modules/mangroves-restoration-and-management/basic-knowledge/en/#:~{}:text=Mangroveecosystemsprovide habitatfor,forbirdsandotherwildlife (accessed on 6 March 2020).
GNF Mangrove Rehabilitation in Asia—Local Action and Cross-Border Transfer of Knowledge for the Conservation of Climate, Forests and Biodiversity. Available online: https://www.globalnature.org/Mangroves (accessed on 6 March 2020).
Martínez-Espinosa, C.; Wolfs, P.; Vande Velde, K.; Satyanarayana, B.; Dahdouh-Guebas, F.; Hugé, J. Call for a collaborative management at Matang Mangrove Forest Reserve, Malaysia: An assessment from local stakeholders’ view point. For. Ecol. Manag. 2020, 458, 117741. [CrossRef]
Friess, D.A.; Yando, E.S.; Abuchahla, G.M.O.; Adams, J.B.; Cannicci, S.; Canty, S.W.J.; Cavanaugh, K.C.; Connolly, R.M.; Cormier, N.; Dahdouh-Guebas, F.; et al. Mangroves give cause for conservation optimism, for now. Curr. Biol. 2020, 30, R153–R154. [CrossRef]
Hamilton, S.E.; Casey, D. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 2016, 25, 729–738. [CrossRef]
Satyanarayana, B.; Mulder, S.; Jayatissa, L.P.; Dahdouh-Guebas, F. Are the mangroves in the Galle-Unawatuna area (Sri Lanka) at risk? A social-ecological approach involving local stakeholders for a better conservation policy. Ocean Coast. Manag. 2013, 71, 225–237. [CrossRef]
Curnick, D.J.; Pettorelli, N.; Amir, A.A.; Balke, T.; Barbier, E.B.; Crooks, S.; Dahdouh-Guebas, F.; Duncan, C.; Endsor, C.; Friess, D.A.; et al. The value of small mangrove patches. Science (80-) 2019, 363, 239. [CrossRef]
Jacobson, A.P.; Riggio, J.; Tait, A.M.; Baillie, J.E.M. Global areas of low human impact (‘Low Impact Areas’) and fragmentation of the natural world. Sci. Rep. 2019, 9, 14179. [CrossRef]
Li, M.S.; Mao, L.J.; Shen, W.J.; Liu, S.Q.; Wei, A.S. Change and fragmentation trends of Zhanjiang mangrove forests in southern China using multi-temporal Landsat imagery (1977–2010). Estuar. Coast. Shelf Sci. 2013, 130, 111–120. [CrossRef]
Arias-Ortiz, A.; Masqué, P.; Glass, L.; Benson, L.; Kennedy, H.; Duarte, C.M.; Garcia-Orellana, J.; Benitez-Nelson, C.R.; Humphries, M.S.; Ratefinjanahary, I.; et al. Losses of Soil Organic Carbon with Deforestation in Mangroves of Madagascar. Ecosystems 2021, 24, 1–19. [CrossRef]
Kennedy, J.P.; Craig, H.; Jara-Cavieres, A.; Lundy, A.; Preziosi, R.F.; Rowntree, J.K. Multiplex microsatellite PCR panels for the neotropical red mangrove, Rhizophora mangle: Combining efforts towards a cost-effective and modifiable tool to better inform conservation and management. Conserv. Genet. Resour. 2020, 12, 503–513. [CrossRef]
Sippo, J.Z.; Lovelock, C.E.; Santos, I.R.; Sanders, C.J.; Maher, D.T. Mangrove mortality in a changing climate: An overview. Estuar. Coast. Shelf Sci. 2018, 215, 241–249. [CrossRef]
Adeel, Z.; Pomeroy, R. Assessment and management of mangrove ecosystems in developing countries. Trees Struct. Funct. 2002, 16, 235–238. [CrossRef]
Marchio, D.A.; Savarese, M.; Bovard, B.; Mitsch, W.J. Carbon sequestration and sedimentation in mangrove swamps influenced by hydrogeomorphic conditions and urbanization in Southwest Florida. Forests 2016, 7, 116. [CrossRef]
Sanderman, J.; Hengl, T.; Fiske, G.; Solvik, K.; Adame, M.F.; Benson, L.; Bukoski, J.J.; Carnell, P.; Cifuentes-Jara, M.; Donato, D.; et al. A global map of mangrove forest soil carbon at 30 m spatial resolution. Environ. Res. Lett. 2018, 13, 055002. [CrossRef]
Bunting, P.; Rosenqvist, A.; Lucas, R.M.; Rebelo, L.M.; Hilarides, L.; Thomas, N.; Hardy, A.; Itoh, T.; Shimada, M.; Finlayson, C.M. The global mangrove watch—A new 2010 global baseline of mangrove extent. Remote Sens. 2018, 10, 1669. [CrossRef]
Spalding, M. World Atlas of Mangroves; Routledge: London, UK, 2010.
Goldberg, L.; Lagomasino, D.; Thomas, N.; Fatoyinbo, T. Global declines in human-driven mangrove loss. Glob. Chang. Biol. 2020, 26, 5844–5855. [CrossRef] [PubMed]
Richards, D.R.; Friess, D.A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. USA 2016, 113, 344–349. [CrossRef] [PubMed]
Granado, R.; Pinto Neta, L.; Nunes-Freitas, A.; Voloch, C.; Lira, C. Assessing Genetic Diversity after Mangrove Restoration in Brazil: Why Is It So Important? Diversity 2018, 10, 27. [CrossRef]
Schaeffer-Novelli, Y.; Cintrón-Molero, G.; Reis-Neto, A.S.; Abuchahla, G.M.O.; Neta, L.C.P.; Lira-Medeiros, C.F. The mangroves of Araçá Bay through time: An interdisciplinary approach for conservation of spatial diversity at large scale. Ocean Coast. Manag. 2018, 164, 60–67. [CrossRef]
Alongi, D.M. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuar. Coast. Shelf Sci. 2008, 76, 1–13. [CrossRef]
Nehemia, A.; Kochzius, M. Reduced genetic diversity and alteration of gene flow in a fiddler crab due to mangrove degradation. PLoS ONE 2017, 12, e0182987. [CrossRef]
Do, B.T.N.; Koedam, N.; Triest, L. Avicennia marina maintains genetic structure whereas Rhizophora stylosa connects mangroves in a flooded, former inner sea (Vietnam). Estuar. Coast. Shelf Sci. 2019, 222, 195–204. [CrossRef]
Fairuz-Fozi, N.; Triest, L.; Mat Zauki, N.A.; Kaben, A.M.; Nelson, B.R.; Chatterji, A.; Akhir, M.F.; Satyanarayana, B.; Dahdouh-Guebas, F. Mangrove horseshoe crab (Carcinoscorpius rotundicauda Latreille, 1802) populations show genetic break in Strait of Malacca with a connectivity along southern coasts of Peninsular Malaysia. Aquat. Conserv. Mar. Freshw. Ecosyst. 2021. [CrossRef]
Guo, Z.; Li, X.; He, Z.; Yang, Y.; Wang, W.; Zhong, C.; Greenberg, A.J.; Wu, C.I.; Duke, N.C.; Shi, S. Extremely low genetic diversity across mangrove taxa reflects past sea level changes and hints at poor future responses. Glob. Chang. Biol. 2018, 24, 1741–1748. [CrossRef]
Ngeve, M.N.; Van der Stocken, T.; Menemenlis, D.; Koedam, N.; Triest, L. Hidden founders? Strong bottlenecks and fine-scale genetic structure in mangrove populations of the Cameroon Estuary complex. Hydrobiologia 2017, 803, 189–207. [CrossRef]
Binks, R.M.; Byrne, M.; McMahon, K.; Pitt, G.; Murray, K.; Evans, R.D. Habitat discontinuities form strong barriers to gene flow among mangrove populations, despite the capacity for long-distance dispersal. Divers. Distrib. 2019, 25, 298–309. [CrossRef]
Ragavan, P.; Zhou, R.; Ng, W.L.; Rana, T.S.; Mageswaran, T.; Mohan, P.M.; Saxena, A. Natural hybridization in mangroves—An overview. Bot. J. Linn. Soc. 2017, 185, 208–224. [CrossRef]
Andersen, G.L. How to detect desert trees using corona images: Discovering historical ecological data. J. Arid Environ. 2006, 65, 491–511. [CrossRef]
Otero, V.; Van De Kerchove, R.; Satyanarayana, B.; Mohd-Lokman, H.; Lucas, R.; Dahdouh-Guebas, F. An analysis of the early regeneration of mangrove forests using Landsat time series in the matang mangrove forest reserve, Peninsular Malaysia. Remote Sens. 2019, 11, 774. [CrossRef]
Luo, S.; Chui, T.F.M. Annual variations in regional mangrove cover in southern China and potential macro-climatic and hydrological indicators. Ecol. Indic. 2020, 110, 105927. [CrossRef]
Nikinmaa, L.; Lindner, M.; Cantarello, E.; Jump, A.S.; Seidl, R.; Winkel, G.; Muys, B. Reviewing the Use of Resilience Concepts in Forest Sciences. Curr. For. Rep. 2020, 6, 61–80. [CrossRef]
Swales, A.; Reeve, G.; Cahoon, D.R.; Lovelock, C.E. Landscape Evolution of a Fluvial Sediment-Rich Avicennia marina Mangrove Forest: Insights from Seasonal and Inter-annual Surface-Elevation Dynamics. Ecosystems 2019, 22, 1232–1255. [CrossRef]
Swales, A.; Lovelock, C.E. Comparison of sediment-plate methods to measure accretion rates in an estuarine mangrove forest (New Zealand). Estuar. Coast. Shelf Sci. 2020, 236, 106642. [CrossRef]
Lucas, R.; Van De Kerchove, R.; Otero, V.; Lagomasino, D.; Fatoyinbo, L.; Omar, H.; Satyanarayana, B.; Dahdouh-Guebas, F. Structural characterisation of mangrove forests achieved through combining multiple sources of remote sensing data. Remote Sens. Environ. 2020, 237, 111543. [CrossRef]
Dangremond, E.M.; Feller, I.C. Precocious reproduction increases at the leading edge of a mangrove range expansion. Ecol. Evol. 2016, 6, 5087–5092. [CrossRef] [PubMed]
Borges, R.; Ferreira, A.C.; Lacerda, L.D. Systematic planning and ecosystem-based management as strategies to reconcile mangrove conservation with resource use. Front. Mar. Sci. 2017, 4, 353. [CrossRef]
Song, D.X.; Huang, C.; Sexton, J.O.; Channan, S.; Feng, M.; Townshend, J.R. Use of landsat and corona data for mapping forest cover change from the mid-1960s to 2000s: Case studies from the eastern united states and central brazil. ISPRS J. Photogramm. Remote Sens. 2015, 103, 81–92. [CrossRef]
Bosire, J.O.; Dahdouh-Guebas, F.; Walton, M.; Crona, B.I.; Lewis, R.R.; Field, C.; Kairo, J.G.; Koedam, N. Functionality of restored mangroves: A review. Aquat. Bot. 2008, 89, 251–259. [CrossRef]
Salmo, S.G.; Lovelock, C.; Duke, N.C. Vegetation and soil characteristics as indicators of restoration trajectories in restored mangroves. Hydrobiologia 2013, 720, 1–18. [CrossRef]
Lee, R.Y.; Porubsky, W.P.; Feller, I.C.; McKee, K.L.; Joye, S.B. Porewater biogeochemistry and soil metabolism in dwarf red mangrove habitats (Twin Cays, Belize). Biogeochemistry 2008, 87, 181–198. [CrossRef]
Pupin, B.; Nahas, E. Microbial populations and activities of mangrove, restinga and Atlantic forest soils from Cardoso Island, Brazil. J. Appl. Microbiol. 2014, 116, 851–864. [CrossRef]
Ren, H.; Jian, S.; Lu, H.; Zhang, Q.; Shen, W.; Han, W.; Yin, Z.; Guo, Q. Restoration of mangrove plantations and colonisation by native species in Leizhou bay, South China. Ecol. Res. 2008, 23, 401–407. [CrossRef]
Satyanarayana, B.; Mohamad, K.A.; Idris, I.F.; Husain, M.L.; Dahdouh-Guebas, F. Assessment of mangrove vegetation based on remote sensing and ground-truth measurements at Tumpat, Kelantan Delta, East Coast of Peninsular Malaysia. Int. J. Remote Sens. 2011, 32, 1635–1650. [CrossRef]
Hamilton, S.E.; Castellanos-Galindo, G.A.; Millones-Mayer, M.; Chen, M. Remote sensing of mangrove forests: Current techniques and existing databases. Coast. Res. Libr. 2018, 25, 497–520. [CrossRef]
Kuenzer, C.; Bluemel, A.; Gebhardt, S.; Quoc, T.V.; Dech, S. Remote sensing of mangrove ecosystems: A review. Remote Sens. 2011, 3, 878–928. [CrossRef]
Ruwaimana, M.; Satyanarayana, B.; Otero, V.; Muslim, A.M.; Muhammad Syafiq, A.; Ibrahim, S.; Raymaekers, D.; Koedam, N.; Dahdouh-Guebas, F. The advantages of using drones over space-borne imagery in the mapping of mangrove forests. PLoS ONE 2018, 13, e0200288. [CrossRef]
Grosse, G.; Schirrmeister, L.; Kunitsky, V.V.; Hubberten, H.W. The use of CORONA images in remote sensing of periglacial geomorphology: An illustration from the NE Siberian coast. Permafr. Periglac. Process. 2005, 16, 163–172. [CrossRef]
Nita, M.D.; Munteanu, C.; Gutman, G.; Abrudan, I.V.; Radeloff, V.C. Widespread forest cutting in the aftermath of World War II captured by broad-scale historical Corona spy satellite photography. Remote Sens. Environ. 2018, 204, 322–332. [CrossRef]
Ghosh, A.; Schmidt, S.; Fickert, T.; Nüsser, M. The Indian Sundarban mangrove forests: History, utilization, conservation strategies and local perception. Diversity 2015, 7, 149–169. [CrossRef]
Leempoel, K.; Satyaranayana, B.; Bourgeois, C.; Zhang, J.; Chen, M.; Wang, J.; Bogaert, J.; Dahdouh-Guebas, F. Dynamics in mangroves assessed by high-resolution and multi-temporal satellite data: A case study in Zhanjiang Mangrove National Nature Reserve (ZMNNR), P. R. China. Biogeosciences 2013, 10, 5681–5689. [CrossRef]
Gao, X.M.; Han, W.D.; Liu, S.Q. The mangrove and its conservation in Leizhou Peninsula, China. J. For. Res. 2009, 20, 174–178. [CrossRef]
Ramsar Convention Bureau. List of Wetlands of International Importance; Ramsar Convention Bureau: Gland, Switzerland, 2002.
World Weather Online Zhanjiang Monthly Climate Averages. Available online: https://www.worldweatheronline.com/zhanjia ng-weather-averages/guangdong/cn.aspx (accessed on 21 September 2020).
Wang, G.; Guan, D.; Xiao, L.; Peart, M.R.; Zhang, H.; Singh, M. Changes in mangrove community structures affecting sediment carbon content in Yingluo Bay of South China. Mar. Pollut. Bull. 2019, 149, 110581. [CrossRef]
Laben, C.A.; Brower, B. Process for Enhancing the Spatial Resolution of Multispectral Imagery Using Pan-Sharpening of Multispectral Imagery Using Pan-Sharpening. U.S. Patent No. 6,011,875, 1 January 2000.
ESRI Fundamentals of Panchromatic Sharpening. Available online: https://desktop.arcgis.com/en/arcmap/10.3/manage-data/raster-and-images/fundamentals-of-panchromatic-sharpening.htm (accessed on 1 June 2021).
U.S. EPA. Methods for Evaluating Wetland Condition: Using Algae To Assess Environ-mental Conditions in Wetlands; U.S. EPA: Washington, DC, USA, 2002; Volume 11, pp. 246–259.
Tomlinson, P.B. The Botany of Mangroves, 1st ed.; Cambridge University Press: Cambridge, UK, 1986; ISBN 0521255678.
Brokaw, N.; Thompson, J. The H for DBH. For. Ecol. Manag. 2000, 129, 89–91. [CrossRef]
Cintrón, G.; Schaeffer-Novelli, Y. Methods for studying mangrove structure. In The Mangrove Ecosystem: Research Methods; UNESCO: Paris, France, 1984; pp. 91–113. ISBN 9231021818.
Ellison, A.M.; Mukherjee, B.B.; Karim, A. Testing patterns of zonation in mangroves: Scale dependence and environmental correlates in the Sundarbans of Bangladesh. J. Ecol. 2000, 88, 813–824. [CrossRef]
Piotrowska, M.; Stepien, P.P.; Bartnik, E.; Zakrzewska, E. Basic and neutral amino acid transport in Aspergillus nidulans. J. Gen. Microbiol. 1976, 92, 89–96. [CrossRef]
R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria; Available online: https://www.r-project.org/(accessed on 1 February 2020).
Lee, S.; Lee, D.K. What is the proper way to apply the multiple comparison test? Korean J. Anesthesiol. 2018, 71, 353–360. [CrossRef]
Triest, L. Molecular ecology and biogeography of mangrove trees towards conceptual insights on gene flow and barriers: A review. Aquat. Bot. 2008, 89, 138–154. [CrossRef]
Bosire, J.O.; Dahdouh-Guebas, F.; Kairo, J.G.; Cannicci, S.; Koedam, N. Spatial variations in macrobenthic fauna recolonisation in a tropical mangrove bay. Biodivers. Conserv. 2004, 13, 1059–1074. [CrossRef]
De Oliveira Côrtes, L.H.; Zappes, C.A.; Di Beneditto, A.P.M. The crab harvest in a mangrove forest in south-eastern Brazil: Insights about its maintenance in the long-term. Perspect. Ecol. Conserv. 2018, 16, 113–118. [CrossRef]
Dahdouh-Guebas, F.; Hugé, J.; Abuchahla, G.M.O.; Cannicci, S.; Jayatissa, L.P.; Kairo, J.G.; Kodikara Arachchilage, S.; Koedam, N.; Mafaziya Nijamdeen, T.W.G.F.; Mukherjee, N.; et al. Reconciling nature, people and policy in the mangrove social-ecological system through the adaptive cycle heuristic. Estuar. Coast. Shelf Sci. 2021, 248, 106942. [CrossRef]
Mukherjee, N.; Sutherland, W.J.; Dicks, L.; Hugé, J.; Koedam, N.; Dahdouh-Guebas, F. Ecosystem service valuations of mangrove ecosystems to inform decision making and future valuation exercises. PLoS ONE 2014, 9, e107706. [CrossRef]
Souza, A.F.; Cortez, L.S.R.; Longhi, S.J. Native forest management in subtropical South America: Long-term effects of logging and multiple-use on forest structure and diversity. Biodivers. Conserv. 2012, 21, 1953–1969. [CrossRef]
Floyd Sabins, F.; Ellis, J.M. Remote Sensing: Principles, Interpretation, and Applications, Fourth Edition; Waveland: Long Grove, IL, USA, 2020.
Alfaro, A.C. Benthic macro-invertebrate community composition within a mangrove/seagrass estuary in northern New Zealand. Estuar. Coast. Shelf Sci. 2006, 66, 97–110. [CrossRef]
Jayakody, J.; Amarasinghe, M.; Pahalawattaarachchi, V.; De Silva, K. Vegetation structure and potential gross primary productivity of mangroves at Kadolkele in Meegamuwa (Negombo) estuary, Sri Lanka. Sri Lanka J. Aquat. Sci. 2010, 13, 95. [CrossRef]
Barrett, J.E.; Virginia, R.A.; Wall, D.H.; Parsons, A.N.; Powers, L.E.; Burkins, M.B. Variation in biogeochemistry and soil biodiversity across spatial scales in a polar desert ecosystem. Ecology 2004, 85, 3105–3118. [CrossRef]
Lira-Medeiros, C.F.; Parisod, C.; Fernandes, R.A.; Mata, C.S.; Cardoso, M.A.; Ferreira, P.C.G. Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS ONE 2010, 5, e10326. [CrossRef]
Dittmann, S.; Thiessen, E.; Hartung, E. Applicability of different non-invasive methods for tree mass estimation: A review. For. Ecol. Manag. 2017, 398, 208–215. [CrossRef]
Jenerowicz, A.; Siok, K.; Schismak, A.; Ewiak, I. Improvement of interpretability of archival aerial photographs using remote sensing tools. SPIE Proc. 2018, 10789, 82.
Chen, Q.; Zhao, Q.; Chen, P.; Lu, H.; Jian, S. Eco-exergy based self-organization of the macrobenthic faunal assemblage during mangrove succession in Zhanjiang, China. Ecol. Indic. 2018, 95, 887–894. [CrossRef]
Dahdouh-Guebas, F.; Koedam, N. Coastal vegetation and the Asian tsunami. Science (80-) 2006, 311, 37. [CrossRef] [PubMed]
Zhang, Y.; Wang, W.; Wu, Q.; Fang, B.; Lin, P. The growth of Kandelia candel seedlings in mangrove habitats of the Zhangjiang estuary in Fujian, China. Acta Ecol. Sin. 2006, 26, 1648–1655. [CrossRef]
Dahdouh-Guebas, F.; Verneirt, M.; Cannicci, S.; Kairo, J.G.; Tack, J.F.; Koedam, N. An exploratory study on grapsid crab zonation in Kenyan mangroves. Wetl. Ecol. Manag. 2002, 10, 179–187. [CrossRef]
Van der Stocken, T.; Wee, A.K.S.; De Ryck, D.J.R.; Vanschoenwinkel, B.; Friess, D.A.; Dahdouh-Guebas, F.; Simard, M.; Koedam, N.; Webb, E.L. A general framework for propagule dispersal in mangroves. Biol. Rev. 2019, 94, 1547–1575. [CrossRef] [PubMed]
Fromard, F.; Vega, C.; Proisy, C. Half a century of dynamic coastal change affecting mangrove shorelines of French Guiana. A case study based on remote sensing data analyses and field surveys. Mar. Geol. 2004, 208, 265–280. [CrossRef]
Putz, F.E.; Chan, H.T. Tree growth, dynamics, and productivity in a mature mangrove forest in Malaysia. For. Ecol. Manag. 1986, 17, 211–230. [CrossRef]
Smith, T.J. Forest structure. In Tropical Mangrove Ecosystems; Robertson, A.I., Alongi, D.M., Eds.; Wiley & Sons: Hoboken, NJ, USA, 1992; pp. 101–136.
Dahdouh-Guebas, F.; De Bondt, R.; Abeysinghe, P.D.; Kairo, J.G.; Cannicci, S.; Triest, L.; Koedam, N. Comparative study of the disjunct zonation pattern of the grey mangrove Avicennia marina (Forsk.) Vierh. in Gazi Bay (Kenya). Bull. Mar. Sci. 2004, 74, 237–252.
Gardner, T.A.; Hernández, M.I.M.; Barlow, J.; Peres, C.A. Understanding the biodiversity consequences of habitat change: The value of secondary and plantation forests for neotropical dung beetles. J. Appl. Ecol. 2008, 45, 883–893. [CrossRef]
Okello, J.A.; Robert, E.M.R.; Beeckman, H.; Kairo, J.G.; Dahdouh-Guebas, F.; Koedam, N. Effects of experimental sedimentation on the phenological dynamics and leaf traits of replanted mangroves at Gazi bay, Kenya. Ecol. Evol. 2014, 4, 3187–3200. [CrossRef]
He, B.; Lai, T.; Fan, H.; Wang, W.; Zheng, H. Comparison of flooding-tolerance in four mangrove species in a diurnal tidal zone in the Beibu Gulf. Estuar. Coast. Shelf Sci. 2007, 74, 254–262. [CrossRef]
Osborne, D.J.; Berjak, P. The making of mangroves: The remarkable pioneering role played by seeds of Avicennia marina. Endeavour 1997, 21, 143–147. [CrossRef]
Muoghalu, J.I. Tree species population dynamics in a secondary forest at Ile-Ife, Nigeria after a ground fire. Afr. J. Ecol. 2007, 45, 62–71. [CrossRef]
Satyanarayana, B.; Koedam, N.; De Smet, K.; Di Nitto, D.; Bauwens, M.; Jayatissa, L.P.; Cannicci, S.; Dahdouh-Guebas, F. Long-term mangrove forest development in Sri Lanka: Early predictions evaluated against outcomes using VHR remote sensing and VHR ground-truth data. Mar. Ecol. Prog. Ser. 2011, 443, 51–63. [CrossRef]
Cannicci, S.; Burrows, D.; Fratini, S.; Smith, T.J.; Offenberg, J.; Dahdouh-Guebas, F. Faunal impact on vegetation structure and ecosystem function in mangrove forests: A review. Aquat. Bot. 2008, 89, 186–200. [CrossRef]
López-Portillo, J.; Lewis, R.R.; Saenger, P.; Rovai, A.; Koedam, N.; Dahdouh-Guebas, F.; Agraz-Hernández, C.; Rivera-Monroy, V.H. Mangrove forest restoration and rehabilitation. In Mangrove Ecosystems: A Global Biogeographic Perspective: Structure, Function, and Services; Springer International Publishing: Cham, Switzerland, 2017; pp. 301–345. ISBN 9783319622064.
Ellison, A.M. Mangrove restoration: Do we know enough? Restor. Ecol. 2000, 8, 219–229. [CrossRef]
Kairo, J.G.; Dahdouh-Guebas, F.; Bosire, J.; Koedam, N. Restoration and management of mangrove systems—A lesson for and from the East African region. S. Afr. J. Bot. 2001, 67, 383–389. [CrossRef]
Vannucci, M. Indo-West Pacific Mangroves. In Mangrove Ecosystems; Springer: Berlin/Heidelberg, Germany, 2002; pp. 123–215.
Islam, S.N.; Yahya, U.A.A. Bin Impacts of coastal land use changes on mangrove wetlands at sungai mangsalut basin in Brunei Darussalam. In Coastal Research Library; Springer: New York, NY, USA, 2017; Volume 21, pp. 133–157.
Feagin, R.A.; Mukherjee, N.; Shanker, K.; Baird, A.H.; Cinner, J.; Kerr, A.M.; Koedam, N.; Sridhar, A.; Arthur, R.; Jayatissa, L.P.; et al. Shelter from the storm? Use and misuse of coastal vegetation bioshields for managing natural disasters. Conserv. Lett. 2010, 3, 1–11. [CrossRef]
Kodikara, K.A.S.; Mukherjee, N.; Jayatissa, L.P.; Dahdouh-Guebas, F.; Koedam, N. Have mangrove restoration projects worked? An in-depth study in Sri Lanka. Restor. Ecol. 2017, 25, 705–716. [CrossRef]
Dahdouh-Guebas, F.; Hettiarachchi, S.; Lo Seen, D.; Batelaan, O.; Sooriyarachchi, S.; Jayatissa, L.P.; Koedam, N. Transitions in ancient inland freshwater resource management in Sri Lanka affect biota and human populations in and around coastal lagoons. Curr. Biol. 2005, 15, 579–586. [CrossRef]
Dahdouh-Guebas, F.; Jayatissa, L.P.; Di Nitto, D.; Bosire, J.O.; Lo Seen, D.; Koedam, N. How effective were mangroves as a defence against the recent tsunami? Curr. Biol. 2005, 15, R443–R447. [CrossRef]
Gourlay, I.D. The Definition of Seasonal Growth Zones in Some African Acacia Species—A Review. IAWA J. 2014, 16, 353–359. [CrossRef]
Robert, E.M.R.; Schmitz, N.; Okello, J.A.; Boeren, I.; Beeckman, H.; Koedam, N. Mangrove growth rings: Fact or fiction? Trees Struct. Funct. 2011, 25, 49–58. [CrossRef]
Schmitz, N.; Verheyden, A.; Kairo, J.G.; Beeckman, H.; Koedam, N. Successive cambia development in Avicennia marina (Forssk.) Vierh. is not climatically driven in the seasonal climate at Gazi Bay, Kenya. Dendrochronologia 2007, 25, 87–96. [CrossRef]
Melville, F.; Burchett, M.; Pulkownik, A. Genetic variation among age-classes of the mangrove Avicennia marina in clean and contaminated sediments. Mar. Pollut. Bull. 2004, 49, 695–703. [CrossRef] [PubMed]
Chen, X.Y. Effects of plant density and age on the mating system of Kandelia candel Druce (Rhizophoraceae), a viviparous mangrove species. Hydrobiologia 2000, 432, 189–193. [CrossRef]
Ge, J.P.; Cai, B.; Ping, W.; Song, G.; Ling, H.; Lin, P. Mating system and population genetic structure of Bruguiera gymnorrhiza (Rhizophoraceae), a viviparous mangrove species in China. J. Exp. Mar. Bio. Ecol. 2005, 326, 48–55. [CrossRef]