Li, Xuesong ; Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
David, Arthur H. G. ; Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
Zhang, Long ; Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
Song, Bo ; Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
Jiao, Yang; Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
Sluysmans, Damien ; Université de Liège - ULiège > Molecular Systems (MolSys) ; Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
Qiu, Yunyan ; Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
Wu, Yong; Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
Zhao, Xingang ; Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
Feng, Yuanning ; Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
Mosca, Lorenzo ; Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States ; Department of Chemistry, University of Rhode Island, 140 Flagg Rd., Kingston, Rhode Island 02881, United States
Stoddart, J. Fraser ; Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States ; School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia ; Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China ; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
Jørgensen, P. L. Mechanism of the Na+, K+Pump Protein Structure and Conformations of the Pure (Na++ K+)-ATPase. Biochim. Biophys. Acta 1982, 694, 27-68, 10.1016/0304-4157(82)90013-2
Boyer, P. D. Energy, Life, and ATP (Nobel Lecture). Angew. Chem., Int. Ed. 1998, 37, 2296-2307, 10.1002/(sici)1521-3773(19980918)37:17<2296::aid-anie2296>3.0.co;2-w
Skou, J. C. The Identification of the Sodium-Potassium Pump (Nobel Lecture). Angew. Chem., Int. Ed. 1998, 37, 2320-2328, 10.1002/(sici)1521-3773(19980918)37:17<2320::aid-anie2320>3.0.co;2-2
Walker, J. E. ATP Synthesis by Rotary Catalysis (Nobel lecture). Angew. Chem., Int. Ed. 1998, 37, 2308-2319, 10.1002/(sici)1521-3773(19980918)37:17<2308::aid-anie2308>3.0.co;2-w
Toyoshima, C.; Kanai, R.; Cornelius, F. First Crystal Structures of Na+,K+-ATPase: New Light on the Oldest Ion Pump. Structure 2011, 19, 1732-1738, 10.1016/j.str.2011.10.016
Walker, J. E. The ATP Synthase: the Understood, the Uncertain and the Unknown. Biochem. Soc. Trans. 2013, 41, 1-16, 10.1042/bst20110773
Cheng, C.; McGonigal, P. R.; Stoddart, J. F.; Astumian, R. D. Design and Synthesis of Nonequilibrium Systems. ACS Nano 2015, 9, 8672-8688, 10.1021/acsnano.5b03809
Pezzato, C.; Cheng, C.; Stoddart, J. F.; Astumian, R. D. Mastering the Non-Equilibrium Assembly And Operation of Molecular Machines. Chem. Soc. Rev. 2017, 46, 5491-5507, 10.1039/c7cs00068e
Astumian, R. D. Kinetic Asymmetry Allows Macromolecular Catalysts to Drive an Information Ratchet. Nat. Commun. 2019, 10, 3837, 10.1038/s41467-019-11402-7
Astumian, R. D.; Pezzato, C.; Feng, Y.; Qiu, Y.; McGonigal, P. R.; Cheng, C.; Stoddart, J. F. Non-Equilibrium Kinetics and Trajectory Thermodynamics of Synthetic Molecular Pumps. Mater. Chem. Front. 2020, 4, 1304-1314, 10.1039/d0qm00022a
Qiu, Y.; Feng, Y.; Guo, Q.-H.; Astumian, R. D.; Stoddart, J. F. Pumps through the Ages. Chem 2020, 6, 1952-1977, 10.1016/j.chempr.2020.07.009
Feng, Y.; Ovalle, M.; Seale, J. S. W.; Lee, C. K.; Kim, D. J.; Astumian, R. D.; Stoddart, J. F. Molecular Pumps and Motors. J. Am. Chem. Soc. 2021, 143, 5569-5591, 10.1021/jacs.0c13388
Stoddart, J. F. Molecular Machines. Acc. Chem. Res. 2001, 34, 410-411, 10.1021/ar010084w
Coskun, A.; Banaszak, M.; Astumian, R. D.; Stoddart, J. F.; Grzybowski, B. A. Great Expectations: Can Artificial Molecular Machines Deliver on their Promise?. Chem. Soc. Rev. 2012, 41, 19-30, 10.1039/c1cs15262a
Erbas-Cakmak, S.; Leigh, D. A.; McTernan, C. T.; Nussbaumer, A. L. Artificial Molecular Machines. Chem. Rev. 2015, 115, 10081-10206, 10.1021/acs.chemrev.5b00146
Leigh, D. A. Genesis of the Nanomachines: The 2016 Nobel Prize in Chemistry. Angew. Chem., Int. Ed. 2016, 55, 14506-14508, 10.1002/anie.201609841
Sauvage, J.-P. From Chemical Topology to Molecular Machines (Nobel Lecture). Angew. Chem., Int. Ed. 2017, 56, 11080-11093, 10.1002/anie.201702992
Stoddart, J. F. Mechanically Interlocked Molecules (MIMs)-Molecular Shuttles, Switches, and Machines (Nobel Lecture). Angew. Chem., Int. Ed. 2017, 56, 11094-11125, 10.1002/anie.201703216
Kassem, S.; van Leeuwen, T.; Lubbe, A. S.; Wilson, M. R.; Feringa, B. L.; Leigh, D. A. Artificial Molecular Motors. Chem. Soc. Rev. 2017, 46, 2592-2621, 10.1039/c7cs00245a
Lancia, F.; Ryabchun, A.; Katsonis, N. Life-like Motion Driven by Artificial Molecular Machines. Nat. Rev. Chem. 2019, 3, 536-551, 10.1038/s41570-019-0122-2
Mena-Hernando, S.; Pérez, E. M. Mechanically Interlocked Materials. Rotaxanes and Catenanes Beyond the Small Molecule. Chem. Soc. Rev. 2019, 48, 5016-5032, 10.1039/c8cs00888d
Sluysmans, D.; Stoddart, J. F. The Burgeoning of Mechanically Interlocked Molecules in Chemistry. Trends Chem. 2019, 1, 185-197, 10.1016/j.trechm.2019.02.013
Aprahamian, I. The Future of Molecular Machines. ACS Cent. Sci. 2020, 6, 347-358, 10.1021/acscentsci.0c00064
Baroncini, M.; Silvi, S.; Credi, A. Photo-and Redox-Driven Artificial Molecular Motors. Chem. Rev. 2020, 120, 200-268, 10.1021/acs.chemrev.9b00291
Dattler, D.; Fuks, G.; Heiser, J.; Moulin, E.; Perrot, A.; Yao, X.; Giuseppone, N. Design of Collective Motions from Synthetic Molecular Switches, Rotors, and Motors. Chem. Rev. 2020, 120, 310-433, 10.1021/acs.chemrev.9b00288
Hoyas Pérez, N.; Lewis, J. E. M. Synthetic Strategies Towards Mechanically Interlocked Oligomers and Polymers. Org. Biomol. Chem. 2020, 18, 6757-6780, 10.1039/d0ob01583k
Moulin, E.; Faour, L.; Carmona-Vargas, C. C.; Giuseppone, N. From Molecular Machines to Stimuli-Responsive Materials. Adv. Mater. 2020, 32, 1906036, 10.1002/adma.201906036
Heard, A. W.; Goldup, S. M. Simplicity in the Design, Operation, and Applications of Mechanically Interlocked Molecular Machines. ACS Cent. Sci. 2020, 6, 117-128, 10.1021/acscentsci.9b01185
Gisbert, Y.; Abid, S.; Kammerer, C.; Rapenne, G. Molecular Gears: From Solution to Surfaces. Chem.-Eur. J. 2021, 27, 12019-12031, 10.1002/chem.202101489
Amano, S.; Borsley, S.; Leigh, D. A.; Sun, Z. Chemical Engines: Driving Systems Away from Equilibrium Through Catalyst Reaction Cycles. Nat. Nanotechnol. 2021, 16, 1057-1067, 10.1038/s41565-021-00975-4
Li, H.; Cheng, C.; McGonigal, P. R.; Fahrenbach, A. C.; Frasconi, M.; Liu, W.-G.; Zhu, Z.; Zhao, Y.; Ke, C.; Lei, J.; Young, R. M.; Dyar, S. M.; Co, D. T.; Yang, Y.-W.; Botros, Y. Y.; Goddard, W. A., III; Wasielewski, M. R.; Astumian, R. D.; Stoddart, J. F. Relative Unidirectional Translation in an Artificial Molecular Assembly Fueled by Light. J. Am. Chem. Soc. 2013, 135, 18609-18620, 10.1021/ja4094204
Cheng, C.; McGonigal, P. R.; Schneebeli, S. T.; Li, H.; Vermeulen, N. A.; Ke, C.; Stoddart, J. F. An Artificial Molecular Pump. Nat. Nanotechnol. 2015, 10, 547-553, 10.1038/nnano.2015.96
Ragazzon, G.; Baroncini, M.; Silvi, S.; Venturi, M.; Credi, A. Light-Powered Autonomous and Directional Molecular Motion of a Dissipative Self-Assembling System. Nat. Nanotechnol. 2015, 10, 70-75, 10.1038/nnano.2014.260
Erbas-Cakmak, S.; Fielden, S. D. P.; Karaca, U.; Leigh, D. A.; McTernan, C. T.; Tetlow, D. J.; Wilson, M. R. Rotary and Linear Molecular Motors Driven by Pulses of a Chemical Fuel. Science 2017, 358, 340-343, 10.1126/science.aao1377
Amano, S.; Fielden, S. D. P.; Leigh, D. A. A Catalysis-Driven Artificial Molecular Pump. Nature 2021, 594, 529-534, 10.1038/s41586-021-03575-3
Corra, S.; Casimiro, L.; Baroncini, M.; Groppi, J.; La Rosa, M.; Tranfić Bakić, M.; Silvi, S.; Credi, A. Artificial Supramolecular Pumps Powered by Light. Chem.-Eur. J. 2021, 27, 11076-11083, 10.1002/chem.202101163
Pezzato, C.; Nguyen, M. T.; Cheng, C.; Kim, D. J.; Otley, M. T.; Stoddart, J. F. An Efficient Artificial Molecular Pump. Tetrahedron 2017, 73, 4849-4857, 10.1016/j.tet.2017.05.087
Pezzato, C.; Nguyen, M. T.; Kim, D. J.; Anamimoghadam, O.; Mosca, L.; Stoddart, J. F. Controlling Dual Molecular Pumps Electrochemically. Angew. Chem., Int. Ed. 2018, 57, 9325-9329, 10.1002/anie.201803848
Qiu, Y.; Zhang, L.; Pezzato, C.; Feng, Y.; Li, W.; Nguyen, M. T.; Cheng, C.; Shen, D.; Guo, Q.-H.; Shi, Y.; Cai, K.; Alsubaie, F. M.; Astumian, R. D.; Stoddart, J. F. A Molecular Dual Pump. J. Am. Chem. Soc. 2019, 141, 17472-17476, 10.1021/jacs.9b08927
Guo, Q.-H.; Qiu, Y.; Kuang, X.; Liang, J.; Feng, Y.; Zhang, L.; Jiao, Y.; Shen, D.; Astumian, R. D.; Stoddart, J. F. Artificial Molecular Pump Operating in Response to Electricity and Light. J. Am. Chem. Soc. 2020, 142, 14443-14449, 10.1021/jacs.0c06663
Feng, L.; Qiu, Y.; Guo, Q.-H.; Chen, Z.; Seale, J. S. W.; He, K.; Wu, H.; Feng, Y.; Farha, O. K.; Astumian, R. D.; Stoddart, J. F. Active Mechanisorption Driven by Pumping Cassettes. Science 2021, 374, 1215-1221, 10.1126/science.abk1391
Qiu, Y.; Song, B.; Pezzato, C.; Shen, D.; Liu, W.; Zhang, L.; Feng, Y.; Guo, Q.-H.; Cai, K.; Li, W.; Chen, H.; Nguyen, M. T.; Shi, Y.; Cheng, C.; Astumian, R. D.; Li, X.; Stoddart, J. F. A Precise Polyrotaxane Synthesizer. Science 2020, 368, 1247-1253, 10.1126/science.abb3962
Cai, K.; Shi, Y.; Zhuang, G.-W.; Zhang, L.; Qiu, Y.; Shen, D.; Chen, H.; Jiao, Y.; Wu, H.; Cheng, C.; Stoddart, J. F. Molecular-Pump-Enabled Synthesis of a Daisy Chain Polymer. J. Am. Chem. Soc. 2020, 142, 10308-10313, 10.1021/jacs.0c04029
Inouye, M.; Hayashi, K.; Yonenaga, Y.; Itou, T.; Fujimoto, K.; Uchida, T.-a.; Iwamura, M.; Nozaki, K. A Doubly Alkynylpyrene-Threaded [4]Rotaxane that Exhibits Strong Circularly Polarized Luminescence from the Spatially Restricted Excimer. Angew. Chem., Int. Ed. 2014, 53, 14392-14396, 10.1002/anie.201408193
Vukotic, V. N.; Zhu, K.; Baggi, G.; Loeb, S. J. Optical Distinction between "Slow" and "Fast" Translational Motion in Degenerate Molecular Shuttles. Angew. Chem., Int. Ed. 2017, 56, 6136-6141, 10.1002/anie.201612549
Hayashi, K.; Miyaoka, Y.; Ohishi, Y.; Uchida, T. a.; Iwamura, M.; Nozaki, K.; Inouye, M. Observation of Circularly Polarized Luminescence of the Excimer from Two Perylene Cores in the Form of [4]Rotaxane. Chem.-Eur. J. 2018, 24, 14613-14616, 10.1002/chem.201803215
Garci, A.; Beldjoudi, Y.; Kodaimati, M. S.; Hornick, J. E.; Nguyen, M. T.; Cetin, M. M.; Stern, C. L.; Roy, I.; Weiss, E. A.; Stoddart, J. F. Mechanical-Bond-Induced Exciplex Fluorescence in an Anthracene-Based Homo[2]catenane. J. Am. Chem. Soc. 2020, 142, 7956-7967, 10.1021/jacs.0c02128
Rajamalli, P.; Rizzi, F.; Li, W.; Jinks, M. A.; Gupta, A. K.; Laidlaw, B. A.; Samuel, I. D. W.; Penfold, T. J.; Goldup, S. M.; Zysman-Colman, E. Using the Mechanical Bond to Tune the Performance of a Thermally Activated Delayed Fluorescence Emitter. Angew. Chem., Int. Ed. 2021, 60, 12066-12073, 10.1002/anie.202101870
Cao, Z.-Q.; Miao, Q.; Zhang, Q.; Li, H.; Qu, D.-H.; Tian, H. A Fluorescent Bistable [2]Rotaxane Molecular Switch on SiO2Nanoparticles. Chem. Commun. 2015, 51, 4973-4976, 10.1039/c4cc09976a
Cao, Z.-Q.; Luan, Z.-L.; Zhang, Q.; Gu, R.-R.; Ren, J.; Qu, D.-H. An Acid/Base Responsive Side-Chain Polyrotaxane System with a Fluorescent Signal. Polym. Chem. 2016, 7, 1866-1870, 10.1039/c5py01944c
Sagara, Y.; Karman, M.; Verde-Sesto, E.; Matsuo, K.; Kim, Y.; Tamaoki, N.; Weder, C. Rotaxanes as Mechanochromic Fluorescent Force Transducers in Polymers. J. Am. Chem. Soc. 2018, 140, 1584-1587, 10.1021/jacs.7b12405
Muramatsu, T.; Okado, Y.; Traeger, H.; Schrettl, S.; Tamaoki, N.; Weder, C.; Sagara, Y. Rotaxane-Based Dual Function Mechanophores Exhibiting Reversible and Irreversible Responses. J. Am. Chem. Soc. 2021, 143, 9884-9892, 10.1021/jacs.1c03790
Lee, J.-J.; White, A. G.; Rice, D. R.; Smith, B. D. In Vivo Imaging Using Polymeric Nanoparticles Stained with Near-Infrared Chemiluminescent and Fluorescent Squaraine Catenane Endoperoxide. Chem. Commun. 2013, 49, 3016-3018, 10.1039/c3cc40630j
Cole, E. L.; Arunkumar, E.; Xiao, S.; Smith, B. A.; Smith, B. D. Water-Soluble, Deep-Red Fluorescent Squaraine Rotaxanes. Org. Biomol. Chem. 2012, 10, 5769-5773, 10.1039/c2ob06783h
Pérez, E. M.; Dryden, D. T. F.; Leigh, D. A.; Teobaldi, G.; Zerbetto, F. A Generic Basis for Some Simple Light-Operated Mechanical Molecular Machines. J. Am. Chem. Soc. 2004, 126, 12210-12211, 10.1021/ja0484193
Qu, D.-H.; Wang, Q.-C.; Ren, J.; Tian, H. A Light-Driven Rotaxane Molecular Shuttle with Dual Fluorescence Addresses. Org. Lett. 2004, 6, 2085-2088, 10.1021/ol049605g
Wang, Q.-C.; Qu, D.-H.; Ren, J.; Chen, K.; Tian, H. A Lockable Light-Driven Molecular Shuttle with a Fluorescent Signal. Angew. Chem., Int. Ed. 2004, 43, 2661-2665, 10.1002/anie.200453708
Onagi, H.; Rebek, J., Jr. Fluorescence Resonance Energy Transfer Across a Mechanical Bond of a Rotaxane. Chem. Commun. 2005, 4604-4606, 10.1039/b506177f
Zhang, H.; Hu, J.; Qu, D.-H. Dual-Mode Control of PET Process in a Ferrocene-Functionalized [2]Rotaxane with High-Contrast Fluorescence Output. Org. Lett. 2012, 14, 2334-2337, 10.1021/ol300753d
Mateo-Alonso, A.; Ehli, C.; Guldi, D. M.; Prato, M. A Three-Level Luminescent Response in a Pyrene/Ferrocene Rotaxane. Org. Lett. 2013, 15, 84-87, 10.1021/ol303108q
Kwan, C.-S.; Chan, A. S. C.; Leung, K. C.-F. A Fluorescent and Switchable Rotaxane Dual Organocatalyst. Org. Lett. 2016, 18, 976-979, 10.1021/acs.orglett.5b03700
Ghosh, A.; Paul, I.; Adlung, M.; Wickleder, C.; Schmittel, M. Oscillating Emission of [2]Rotaxane Driven by Chemical Fuel. Org. Lett. 2018, 20, 1046-1049, 10.1021/acs.orglett.7b03996
Wu, Y.; Frasconi, M.; Liu, W.-G.; Young, R. M.; Goddard, W. A.; Wasielewski, M. R.; Stoddart, J. F. Electrochemical Switching of a Fluorescent Molecular Rotor Embedded within a Bistable Rotaxane. J. Am. Chem. Soc. 2020, 142, 11835-11846, 10.1021/jacs.0c03701
Leigh, D. A.; Morales, M. Á. F.; Pérez, E. M.; Wong, J. K. Y.; Saiz, C. G.; Slawin, A. M. Z.; Carmichael, A. J.; Haddleton, D. M.; Brouwer, A. M.; Buma, W. J.; Wurpel, G. W. H.; León, S.; Zerbetto, F. Patterning through Controlled Submolecular Motion: Rotaxane-Based Switches and Logic Gates that Function in Solution and Polymer Films. Angew. Chem., Int. Ed. 2005, 44, 3062-3067, 10.1002/anie.200500101
Qu, D.-H.; Wang, Q.-C.; Tian, H. A Half Adder Based on a Photochemically Driven [2]Rotaxane. Angew. Chem., Int. Ed. 2005, 44, 5296-5299, 10.1002/anie.200501215
David, A. H. G.; Casares, R.; Cuerva, J. M.; Campaña, A. G.; Blanco, V. A [2]Rotaxane-Based Circularly Polarized Luminescence Switch. J. Am. Chem. Soc. 2019, 141, 18064-18074, 10.1021/jacs.9b07143
Li, W. J.; Gu, Q.; Wang, X. Q.; Zhang, D. Y.; Wang, Y. T.; He, X.; Wang, W.; Yang, H. B. AIE-Active Chiral [3]Rotaxanes with Switchable Circularly Polarized Luminescence. Angew. Chem., Int. Ed. 2021, 60, 9507-9515, 10.1002/anie.202100934
Canton, M.; Groppi, J.; Casimiro, L.; Corra, S.; Baroncini, M.; Silvi, S.; Credi, A. Second-Generation Light-Fueled Supramolecular Pump. J. Am. Chem. Soc. 2021, 143, 10890-10894, 10.1021/jacs.1c06027
Crawford, A. G.; Liu, Z.; Mkhalid, I. A. I.; Thibault, M. H.; Schwarz, N.; Alcaraz, G.; Steffen, A.; Collings, J. C.; Batsanov, A. S.; Howard, J. A. K.; Marder, T. B. Synthesis of 2-and 2,7-Functionalized Pyrene Derivatives: An Application of Selective C-H Borylation. Chem.-Eur. J. 2012, 18, 5022-5035, 10.1002/chem.201103774
Heller, P.; Mohr, N.; Birke, A.; Weber, B.; Reske-Kunz, A.; Bros, M.; Barz, M. Directed Interactions of Block Copolypept(o)ides with Mannose-Binding Receptors: PeptoMicelles Targeted to Cells of the Innate Immune System. Macromol. Biosci. 2015, 15, 63-73, 10.1002/mabi.201400417
Kitamura, M.; Koga, T.; Yano, M.; Okauchi, T. Direct Synthesis of Organic Azides from Alcohols Using 2-Azido-1,3-dimethylimidazolinium Hexafluorophosphate. Synlett 2012, 23, 1335-1338, 10.1055/s-0031-1290958
Tornøe, C. W.; Christensen, C.; Meldal, M. Peptidotriazoles on Solid Phase:[ 1,2,3]-Triazolesby Regiospecific Copper (I)-Catalyzed1,3-DipolarCycloadditions of Terminal Alkynes to Azides. J. Org. Chem. 2002, 67, 3057-3064, 10.1021/jo011148j
Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective "Ligation" of Azides and Terminal Alkynes. Angew. Chem., Int. Ed. 2002, 41, 2596-2599, 10.1002/1521-3773(20020715)41:14<2596::aid-anie2596>3.0.co;2-4
Meldal, M.; Tornøe, C. W. Cu-Catalyzed Azide-Alkyne Cycloaddition. Chem. Rev. 2008, 108, 2952-3015, 10.1021/cr0783479
Barnes, J. C.; Juríček, M.; Vermeulen, N. A.; Dale, E. J.; Stoddart, J. F. Synthesis of ExnBox Cyclophanes. J. Org. Chem. 2013, 78, 11962-11969, 10.1021/jo401993n
Wu, C.; Lecavalier, P. R.; Shen, Y. X.; Gibson, H. W. Synthesis of a Rotaxane via the Template Method. Chem. Mater. 1991, 3, 569-572, 10.1021/cm00016a002
Gassensmith, J. J.; Barr, L.; Baumes, J. M.; Paek, A.; Nguyen, A.; Smith, B. D. Synthesis and Photophysical Investigation of Squaraine Rotaxanes by "Clicked Capping". Org. Lett. 2008, 10, 3343-3346, 10.1021/ol801189a
Joosten, A.; Trolez, Y.; Collin, J.-P.; Heitz, V.; Sauvage, J.-P. Copper(I)-Assembled [3]Rotaxane Whose Two Rings Act as Flapping Wings. J. Am. Chem. Soc. 2012, 134, 1802-1809, 10.1021/ja210113y
David, A. H. G.; García-Cerezo, P.; Campaña, A. G.; Santoyo-González, F.; Blanco, V. [2]Rotaxane End-Capping Synthesis by Click Michael-Type Addition to the Vinyl Sulfonyl Group. Chem.-Eur. J. 2019, 25, 6170-6179, 10.1002/chem.201900156
Biagini, C.; Fielden, S. D. P.; Leigh, D. A.; Schaufelberger, F.; Di Stefano, S.; Thomas, D. Dissipative Catalysis with a Molecular Machine. Angew. Chem., Int. Ed. 2019, 58, 9876-9880, 10.1002/anie.201905250
Ashton, P. R.; Grognuz, M.; Slawin, A. M. Z.; Fraser Stoddart, J.; Williams, D. J. The Template-Directed Synthesis of a [2]Rotaxane. Tetrahedron Lett. 1991, 32, 6235-6238, 10.1016/0040-4039(91)80797-a
Bissell, R. A.; Córdova, E.; Kaifer, A. E.; Stoddart, J. F. A Chemically and Electrochemically Switchable Molecular Shuttle. Nature 1994, 369, 133-137, 10.1038/369133a0
White, N. G.; Colaço, A. R.; Marques, I.; Félix, V.; Beer, P. D. Halide Selective Anion Recognition by an Amide-Triazolium Axle Containing [2]Rotaxane. Org. Biomol. Chem. 2014, 12, 4924-4931, 10.1039/c4ob00801d
Leigh, D. A.; Marcos, V.; Nalbantoglu, T.; Vitorica-Yrezabal, I. J.; Yasar, F. T.; Zhu, X. Pyridyl-Acyl Hydrazone Rotaxanes and Molecular Shuttles. J. Am. Chem. Soc. 2017, 139, 7104-7109, 10.1021/jacs.7b03307
Saura-Sanmartin, A.; Martinez-Cuezva, A.; Bautista, D.; Marzari, M. R. B.; Martins, M. A. P.; Alajarin, M.; Berna, J. Copper-Linked Rotaxanes for the Building of Photoresponsive Metal Organic Frameworks with Controlled Cargo Delivery. J. Am. Chem. Soc. 2020, 142, 13442-13449, 10.1021/jacs.0c04477
Ashton, P. R.; Bělohradský, M.; Philp, D.; Stoddart, J. F. Slippage-An Alternative Method for Assembling [2]Rotaxanes. J. Chem. Soc., Chem. Commun. 1993, 16, 1269-1274, 10.1039/c39930001269
Ashton, P. R.; Bělohradský, M.; Philp, D.; Spencer, N.; Stoddart, J. F. The Self Assembly of [2]-and [3]-Rotaxanes by Slippage. J. Chem. Soc., Chem. Commun. 1993, 16, 1274-1277, 10.1039/c39930001274
Asakawa, M.; Ashton, P. R.; Ballardini, R.; Balzani, V.; Bělohradský, M.; Gandolfi, M. T.; Kocian, O.; Prodi, L.; Raymo, F. M.; Stoddart, J. F.; Venturi, M. The Slipping Approach to Self-Assembling [n]Rotaxanes. J. Am. Chem. Soc. 1997, 119, 302-310, 10.1021/ja961817o
Ono, T.; Kawasaki, K.; Tanaka, K.; Nagamura, T. Ultrafast Photoresponsive Materials for All-Optical Light Modulation by Polymer Thin Films. Polymer 2017, 116, 523-533, 10.1016/j.polymer.2017.02.051
Jeevan, A. K.; Gopidas, K. R. Photoinduced Electron Transfer in a Self-Assembled Bis(β-cyclodextrin)-Linked Pyrene/Bis(adamantane)-Linked Methyl Viologen Donor-Acceptor System in Aqueous Solution. J. Phys. Chem. B 2021, 125, 4428-4437, 10.1021/acs.jpcb.1c00581
Jeevan, A. K.; Gopidas, K. R. Self-Assembly and Photochemistry of a Pyrene-Methyl Viologen Supramolecular Fiber System. J. Phys. Chem. B 2021, 125, 8539-8549, 10.1021/acs.jpcb.1c04417
CBPQT 4+is also known to quench the fluorescence properties of anthracene-based rotaxanes synthesized via a traditional clipping method: Ballardini, R.; Balzani, V.; Dehaen, W.; Dell'Erba, A. E.; Raymo, F. M.; Stoddart, J. F.; Venturi, M. Anthracene-Containing [2]Rotaxanes: Synthesis, Spectroscopic, and Electrochemical Properties. Eur. J. Org. Chem. 2000, 2000, 591-602, 10.1002/(sici)1099-0690(200002)2000:4<591::aid-ejoc591>3.0.co;2-i