M. Reichstein et al., Climate extremes and the carbon cycle. Nature 500, 287-295 (2013).
P. Ciais et al., Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529-533 (2005).
C. C. Ummenhofer, G. A. Meehl, Extreme weather and climate events with ecological relevance: A review. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160135 (2017).
D. B. Lobell, W. Schlenker, J. Costa-Roberts, Climate trends and global crop production since 1980. Science 333, 616-620 (2011).
C. B. Field, V. Barros, T. F. Stocker, Q. Dahe, Managing the Risks of Extreme Eventsand Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change, (Cambridge University Press, 2012).
C. Rosenzweig, A. Iglesias, X. B. Yang, P. R. Epstein, E. Chivian, Climate change and extreme weather events; implications for food production, plant diseases, and pests. Glob. Change Hum. Health 2, 90-104 (2001).
T. Jeworrek, "Media Information Extreme storms, wildfires and droughts cause heavy nat cat losses in 2018" (2019). https://www.google.com/url?sa=t&rct=j&q=&esrc=s&-source=web&cd=2&ved=2ahUKEwjO_z0wvzoAhWN3KQKHY5hDGQQFjABegQIAx-AB&url=https%3A%2F%2Fwww.munichre.com%2Fcontent%2Fdam%2Fmunichre%2Fglobal%2Fcontent-pieces%2Fdocuments%2Fnatcat-2018-global-20190107_en.pdf %2F_jcr_content%2Frenditions%2Foriginal.media_file.download_attachment.file% 2Fnatcat-2018-global-20190107_en.pdf&usg=AOvVaw0_lO6uW9VTJ0As1EcE6K0y. Accessed 27 April 2020.
S. Hallegatte, J. C. Hourcade, P. Dumas, Why economic dynamics matter in assessing climate change damages: Illustration on extreme events. Ecol. Econ. 62, 330-340 (2007).
P. Stott, How climate change affects extreme weather events. Science 352, 1517-1518 (2016).
C. Körner et al., Where, why and how? Explaining the low-temperature range limits of temperate tree species. J. Ecol. 104, 1076-1088 (2016).
C. Kollas, C. Körner, C. F. Randin, Spring frost and growing season length co-control the cold range limits of broad-leaved trees. J. Biogeogr. 41, 773-783 (2014).
Q. Liu et al., Extension of the growing season increases vegetation exposure to frost. Nat. Commun. 9, 426 (2018).
A. Príncipe et al., Low resistance but high resilience in growth of a major deciduous forest tree (Fagus sylvatica L.) in response to late spring frost in southern Germany. Trees (Berl.) 31, 743-751 (2017).
C. M. Zohner, A. Rockinger, S. S. Renner, Increased autumn productivity permits temperate trees to compensate for spring frost damage. New Phytol. 221, 789-795 (2019).
C. K. Augspurger, Reconstructing patterns of temperature, phenology, and frost damage over 124 years: Spring damage risk is increasing. Ecology 94, 41-50 (2013).
Y. Vitasse et al., Contrasting resistance and resilience to extreme drought and late spring frost in five major European tree species. Glob. Change Biol. 25, 3781-3792 (2019).
Y. Vitasse, A. Lenz, C. Körner, The interaction between freezing tolerance and phenology in temperate deciduous trees. Front. Plant Sci. 5, 541 (2014).
C. M. Zohner, L. Mo, V. Sebald, S. S. Renner, Leaf-out in northern ecotypes of wide-ranging trees requires less spring warming, enhancing the risk of spring frost damage at cold range limits. Glob. Ecol. Biogeogr., doi.org/10.1111/geb.13088 (2020).
A. Vitra, A. Lenz, Y. Vitasse, Frost hardening and dehardening potential in temperate trees from winter to budburst. New Phytol. 216, 113-123 (2017).
A. Lenz, G. Hoch, Y. Vitasse, C. Körner, European deciduous trees exhibit similar safety margins against damage by spring freeze events along elevational gradients. New Phytol. 200, 1166-1175 (2013).
R. L. Snyder, J. de Melo-Abreu, Frost Protection: Fundamentals, Practice and Economics, (Cambridge University Press, 2005).
K. Papagiannaki, K. Lagouvardos, V. Kotroni, G. Papagiannakis, Agricultural losses related to frost events: Use of the 850 hPa level temperature as an explanatory variable of the damage cost. Nat. Hazards Earth Syst. Sci. 14, 2375-2381 (2014).
E. Faust, J. Herbold, Spring Frost Losses and Climate Change-Not a Contradiction in Terms, (Munich RE, 2018).
K. Hufkens et al., Ecological impacts of a widespread frost event following early spring leaf-out. Glob. Change Biol. 18, 2365-2377 (2012).
M. Bascietto, S. Bajocco, F. Mazzenga, G. Matteucci, Assessing spring frost effects on beech forests in Central Apennines from remotely-sensed data. Agric. For. Meteorol. 248, 240-250 (2018).
A. D. Richardson et al., Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature 560, 368-371 (2018).
Y. Vitasse, L. Schneider, C. Rixen, D. Christen, M. Rebetez, Increase in the risk of exposure of forest and fruit trees to spring frosts at higher elevations in Switzerland over the last four decades. Agric. For. Meteorol. 248, 60-69 (2018).
C. J. Chamberlain, B. I. Cook, I. García de Cortázar-Atauri, E. M. Wolkovich, Rethinking false spring risk. Glob. Chang. Biol. 25, 2209-2220 (2019).
C. M. Zohner, S. S. Renner, Innately shorter vegetation periods in North American species explain native-non-native phenological asymmetries. Nat. Ecol. Evol. 1, 1655-1660 (2017).
C. M. Zohner, B. M. Benito, J. D. Fridley, J. C. Svenning, S. S. Renner, Spring predictability explains different leaf-out strategies in the woody floras of North America, Europe and East Asia. Ecol. Lett. 20, 452-460 (2017).
C. Körner, D. Basler, Phenology under global warming. Science 327, 1461-1462 (2010).
L. Breiman, Random forests. Mach. Learn. 45, 5-32 (2001).
E. Desnoues, J. Ferreira de Carvalho, C. M. Zohner, T. W. Crowther, The relative roles of local climate adaptation and phylogeny in determining leaf-out timing of temperate tree species. For. Ecosyst. 4, 26 (2017).
J. C. Svenning, B. Sandel, Disequilibrium vegetation dynamics under future climate change. Am. J. Bot. 100, 1266-1286 (2013).
S. S. Renner, C. M. Zohner, Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu. Rev. Ecol. Evol. Syst. 49, 165-182 (2018).
Y. Vitasse, A. Lenz, G. Hoch, C. Körner, Earlier leaf-out rather than difference in freezing resistance puts juvenile trees at greater risk of damage than adult trees. J. Ecol. 102, 981-988 (2014).
R. Leuning, K. W. Cremer, Leaf temperatures during radiation frost Part I. Observations. Agric. For. Meteorol. 42, 121-133 (1988).
D. M. Olson et al., Terrestrial ecoregions of the world: A new map of life on earth. Bioscience 51, 933-938 (2001).
L. Gu et al., The 2007 eastern US spring freeze: Increased cold damage in a warming world? Bioscience 58, 253-262 (2008).
L. Muffler et al., Distribution ranges and spring phenology explain late frost sensitivity in 170 woody plants from the Northern Hemisphere. Glob. Ecol. Biogeogr. 25, 1061-1071 (2016).
H. B. Mann, Nonparametric tests against trend. Econometrica 13, 245-259 (1945).
M. G. Kendall, Rank Correlation Methods, (Griffin, 1948).
S. E. Fick, R. J. Hijmans, WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302-4315 (2017).
A. Gelman, J. Hill, Data Analysis Using Regression and Multilevel/hierarchical Models, (Cambridge University Press, 2007).
Z. A. Panchen et al., Leaf out times of temperate woody plants are related to phylogeny, deciduousness, growth habit and wood anatomy. New Phytol. 203, 1208-1219 (2014).
C. M. Zohner, B. M. Benito, J. C. Svenning, S. S. Renner, Day length unlikely to constrain climate-driven shifts in leaf-out times of northern woody plants. Nat. Clim. Chang. 6, 1120-1123 (2016).
B. S. Steidinger et al.; GFBI consortium, Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404-408 (2019).
J. Liang et al., Positive biodiversity-productivity relationship predominant in global forests. Science 354, aaf8957 (2016).
Ministerio de Medio Ambiente. Dirección General de Conservación de la Naturaleza. 1997-2007. Tercer Inventario Forestal Nacional. Gobierno de España. https://www.miteco.gob.es/es/biodiversidad/servicios/banco-datos-naturaleza/informacion-dis-ponible/ifn3.aspx. Accessed 27 April 2020.
French National Forest Inventory, Data from "Institut National de l'information géographique et forestière, raw data, annual campaigns 2005 and following." https://inventaire-forestier.ign.fr/spip.php?rubrique159. Accessed 1 January 2015.
Italian National Forest Inventory, Data from "National Inventory of Forests and Forest Carbon Pools (INFC)." https://inventarioforestale.org/. Accessed 27 April 2016.
B. Boyle et al., The taxonomic name resolution service: An online tool for automated standardization of plant names. BMC Bioinf. 14, 16 (2013).
R Development Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2017). http://www.R-project.org. Accessed 27 April 2020.