Allain, C., Cloitre, M., Characterizing the lacunarity of random and deterministic fractal sets. Phys. Rev. A, 44, 1991, 3552.
Antin, C., Pélissier, R., Vincent, G., Couteron, P., Crown allometries are less responsive than stem allometry to tree size and habitat variations in an Indian monsoon forest. Trees 27 (2013), 1485–1495, 10.1007/s00468-013-0896-7.
Asner, G.P., Martin, R.E., Spectral and chemical analysis of tropical forests: scaling from leaf to canopy levels. Remote Sens. Environ. 112 (2008), 3958–3970.
Asner, G.P., Mascaro, J., Muller-Landau, H.C., Vieilledent, G., Vaudry, R., Rasamoelina, M., Hall, J.S., van Breugel, M., A universal airborne LiDAR approach for tropical forest carbon mapping. Oecologia 168 (2011), 1147–1160, 10.1007/s00442-011-2165-z.
Baccini, A., Goetz, S.J., Walker, W.S., Laporte, N.T., Sun, M., Sulla-Menashe, D., Hackler, J., Beck, P.S.A., Dubayah, R., Friedl, M.A., Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Chang. 2 (2012), 182–185.
Barbier, N., Couteron, P., Attenuating the bidirectional texture variation of satellite images of tropical forest canopies. Remote Sens. Environ. 171 (2015), 245–260, 10.1016/j.rse.2015.10.007.
Barbier, N., Couteron, P., Proisy, C., Malhi, Y., Gastellu-Etchegorry, J.-P., The variation of apparent crown size and canopy heterogeneity across lowland Amazonian forests. Glob. Ecol. Biogeogr. 19 (2010), 72–84.
Barbier, N., Proisy, C., Véga, C., Sabatier, D., Couteron, P., Bidirectional texture function of high resolution optical images of tropical forest: an approach using LiDAR hillshade simulations. Remote Sens. Environ. 115 (2011), 167–179.
Barbier, N., Couteron, P., Gastelly-Etchegorry, J.-P., Proisy, C., Linking canopy images to forest structural parameters: potential of a modeling framework. Ann. For. Sci. 69 (2012), 305–311, 10.1007/s13595-011-0116-9.
Baskerville, G.L., Use of logarithmic regression in the estimation of plant biomass. Can. J. For. Res. 2 (1972), 49–53, 10.1139/x72-009.
Bastin, J.-F., Barbier, N., Couteron, P., Adams, B., Shapiro, A., Bogaert, J., De Cannière, C., Aboveground biomass mapping of African forest mosaics using canopy texture analysis: toward a regional approach. Ecol. Appl. 24 (2014), 1984–2001.
Bastin, J.-F., Barbier, N., Réjou-Méchain, M., Fayolle, A., Gourlet-Fleury, S., Maniatis, D., de Haulleville, T., Baya, F., Beeckman, H., Beina, D., Seeing Central African forests through their largest trees. Sci Rep, 5, 2015, 10.1038/srep13156.
Boudon, F., Le Moguédec, G.L., Déformation asymétrique de houppiers pour la génération de représentations paysagères réalistes. Rev. Electron. Francoph. Inform. Graph., 1, 2007.
Breiman, L., Random forests. Mach. Learn. 45 (2001), 5–32.
Broadbent, E.N., Asner, G.P., Peña-Claros, M., Palace, M., Soriano, M., Spatial partitioning of biomass and diversity in a lowland Bolivian forest: linking field and remote sensing measurements. For. Ecol. Manag. 255 (2008), 2602–2616, 10.1016/j.foreco.2008.01.044.
Chave, J., Muller-Landau, H.C., Baker, T.R., Easdale, T.A., Steege, H. ter, Webb, C.O., Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecol. Appl. 16 (2006), 2356–2367, 10.1890/1051-0761(2006)016[2356:RAPVOW]2.0.CO;2.
Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G., Zanne, A.E., Towards a worldwide wood economics spectrum. Ecol. Lett. 12 (2009), 351–366, 10.1111/j.1461-0248.2009.01285.x.
Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M.S., Delitti, W.B.C., Duque, A., Eid, T., Fearnside, P.M., Goodman, R.C., Henry, M., Martínez-Yrízar, A., Mugasha, W.A., Muller-Landau, H.C., Mencuccini, M., Nelson, B.W., Ngomanda, A., Nogueira, E.M., Ortiz-Malavassi, E., Pélissier, R., Ploton, P., Ryan, C.M., Saldarriaga, J.G., Vieilledent, G., Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Chang. Biol. 20 (2014), 3177–3190, 10.1111/gcb.12629.
Couteron, P., Quantifying change in patterned semi-arid vegetation by Fourier analysis of digitized aerial photographs. Int. J. Remote Sens. 23 (2002), 3407–3425.
Couteron, P., Pelissier, R., Nicolini, E.A., Paget, D., Predicting tropical forest stand structure parameters from Fourier transform of very high-resolution remotely sensed canopy images. J. Appl. Ecol. 42 (2005), 1121–1128.
Cressie, N.A., Statistics for Spatial Data: Wiley Series in Probability and Mathematical Statistics. 1993 (Find This Artic. Online).
DeFries, R., Achard, F., Brown, S., Herold, M., Murdiyarso, D., Schlamadinger, B., de Souza, C., Earth observations for estimating greenhouse gas emissions from deforestation in developing countries. Environ. Sci. Pol. 10 (2007), 385–394.
Dolédec, S., Chessel, D., Co-inertia analysis: an alternative method for studying species–environment relationships. Freshw. Biol. 31 (1994), 277–294.
Dray, S., Chessel, D., Thioulouse, J., Co-inertia analysis and the linking of ecological data tables. Ecology 84:11 (2003), 3078–3089.
Erdody, T.L., Moskal, L.M., Fusion of LiDAR and imagery for estimating forest canopy fuels. Remote Sens. Environ. 114 (2010), 725–737.
Fayad, I., Baghdadi, N., Guitet, S., Bailly, J.-S., Hérault, B., Gond, V., El Hajj, M., Minh, D.H.T., Aboveground biomass mapping in French Guiana by combining remote sensing, forest inventories and environmental data. Int. J. Appl. Earth Obs. Geoinf. 52 (2016), 502–514.
Feldpausch, T.R., Lloyd, J., Lewis, S.L., Brienen, R.J., Gloor, M., Monteagudo Mendoza, A., Lopez-Gonzalez, G., Banin, L., Abu Salim, K., Affum-Baffoe, K., Tree height integrated into pantropical forest biomass estimates. Biogeosciences, 2012, 3381–3403.
Franklin, J.F., Spies, T.A., Van Pelt, R., Carey, A.B., Thornburgh, D.A., Berg, D.R., Lindenmayer, D.B., Harmon, M.E., Keeton, W.S., Shaw, D.C., Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. For. Ecol. Manag. 155 (2002), 399–423.
Frazer, G.W., Wulder, M.A., Niemann, K.O., Simulation and quantification of the fine-scale spatial pattern and heterogeneity of forest canopy structure: a lacunarity-based method designed for analysis of continuous canopy heights. For. Ecol. Manag. 214 (2005), 65–90.
Gastellu-Etchegorry, J.-P., Yin, T., Lauret, N., Cajgfinger, T., Gregoire, T., Grau, E., Feret, J.-B., Lopes, M., Guilleux, J., Dedieu, G., Discrete Anisotropic Radiative Transfer (DART 5) for modeling airborne and satellite spectroradiometer and LIDAR acquisitions of natural and urban landscapes. Remote Sens. 7 (2015), 1667–1701.
Guariguata, M.R., Ostertag, R., Neotropical secondary forest succession: changes in structural and functional characteristics. For. Ecol. Manag. 148 (2001), 185–206.
Hajjem, A., Bellavance, F., Larocque, D., Mixed-effects random forest for clustered data. J. Stat. Comput. Simul. 84 (2014), 1313–1328.
Haralick, R.M., Statistical and structural approaches to texture. Proc. IEEE 67 (1979), 786–804.
ICRAF, Wood Density Database. 2007, World Agrofor. Cent., Nairobi Kenya http://db.worldagroforestry.org//wd.
Jeyakumar, S., Ayyappan, N., Muthuramkumar, S., Rajarathinam, K., Impacts of selective logging on diversity, species composition and biomass of residual lowland dipterocarp forest in central Western Ghats, India. Trop. Ecol. (in press).
Lu, D., The potential and challenge of remote sensing-based biomass estimation. Int. J. Remote Sens. 27 (2006), 1297–1328.
Lu, D., Chen, Q., Wang, G., Moran, E., Batistella, M., Zhang, M., Vaglio Laurin, G., Saah, D., Aboveground Forest biomass estimation with Landsat and LiDAR data and uncertainty analysis of the estimates. Int. J. For. Res. 2012 (2012), 1–16, 10.1155/2012/436537.
Malhi, Y., Román-Cuesta, R.M., Analysis of lacunarity and scales of spatial homogeneity in IKONOS images of Amazonian tropical forest canopies. Remote Sens. Environ. 112 (2008), 2074–2087.
Mandelbrot, B.B., The Fractal Geometry Of Nature. 1983, Macmillan.
Marvin, D.C., Koh, L.P., Lynam, A.J., Wich, S., Davies, A.B., Krishnamurthy, R., Stokes, E., Starkey, R., Asner, G.P., Integrating technologies for scalable ecology and conservation. Glob. Ecol. Conserv. 7 (2016), 262–275, 10.1016/j.gecco.2016.07.002.
Mascaro, J., Asner, G.P., Knapp, D.E., Kennedy-Bowdoin, T., Martin, R.E., Anderson, C., Higgins, M., Chadwick, K.D., A tale of two “forests”: random forest machine learning aids tropical forest carbon mapping. PLoS ONE, 9, 2014, e85993, 10.1371/journal.pone.0085993.
Meng, S., Pang, Y., Zhang, Z., Jia, W., Li, Z., Mapping aboveground biomass using texture indices from aerial photos in a temperate Forest of Northeastern China. Remote Sens., 8, 2016, 230, 10.3390/rs8030230.
Mermoz, S., Réjou-Méchain, M., Villard, L., Le Toan, T., Rossi, V., Gourlet-Fleury, S., Decrease of L-band SAR backscatter with biomass of dense forests. Remote Sens. Environ. 159 (2015), 307–317, 10.1016/j.rse.2014.12.019.
Messinger, M., Asner, G., Silman, M., Rapid assessments of Amazon forest structure and biomass using small unmanned aerial systems. Remote Sens., 8, 2016, 615, 10.3390/rs8080615.
Morton, D.C., Cook, B.D., Amazon forest structure generates diurnal and seasonal variability in light utilization. Biogeosciences, 13, 2016, 2195.
Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Shvidenko, A., Lewis, S.L., Canadell, J.G., A large and persistent carbon sink in the world's forests. Science 333 (2011), 988–993.
Pargal, S., Fararoda, R., Rajashekar, G., Balachandran, N., Réjou-Méchain, M., Barbier, N., Jha, C.S., Pélissier, R., Dadhwal, V.K., Couteron, P., Inverting aboveground biomass–canopy texture relationships in a landscape of Forest mosaic in the Western Ghats of India using very high resolution Cartosat imagery. Remote Sens., 9, 2017, 228.
Ploton, P., Pélissier, R., Proisy, C., Flavenot, T., Barbier, N., Rai, S.N., Couteron, P., Assessing aboveground tropical forest biomass using Google Earth canopy images. Ecol. Appl. 22 (2012), 993–1003, 10.1890/11-1606.1.
Ploton, P., Barbier, N., Takoudjou Momo, S., Réjou-Méchain, M., Boyemba Bosela, F., Chuyong, G., Dauby, G., Droissart, V., Fayolle, A., Goodman, R.C., Henry, M., Kamdem, N.G., Mukirania, J.K., Kenfack, D., Libalah, M., Ngomanda, A., Rossi, V., Sonké, B., Texier, N., Thomas, D., Zebaze, D., Couteron, P., Berger, U., Pélissier, R., Closing a gap in tropical forest biomass estimation: taking crown mass variation into account in pantropical allometries. Biogeosciences 13 (2016), 1571–1585, 10.5194/bg-13-1571-2016.
Proisy, C., Couteron, P., Fromard, F., Predicting and mapping mangrove biomass from canopy grain analysis using Fourier-based textural ordination of IKONOS images. Remote Sens. Environ. 109 (2007), 379–392.
Proisy, C., Féret, J.-B., Lauret, N., Gastellu-Etchegorry, J.-P., Mangrove forest dynamics using very high spatial resolution optical remote sensing. Baghdadi, N.N., Zribi, M., (eds.) Remote Sensing of Land Surfaces: Urban and Coastal Area, 2016, 274–300 Paris.
R Core Team, R: a language and environment for statistical computing. R Foundation for Statistical Computing, 2016 (Vienna, Austria. URL https://www.R-project.org/).
Réjou-Méchain, M., Tymen, B., Blanc, L., Fauset, S., Feldpausch, T.R., Monteagudo, A., Phillips, O.L., Richard, H., Chave, J., Using repeated small-footprint LiDAR acquisitions to infer spatial and temporal variations of a high-biomass neotropical forest. Remote Sens. Environ. 169 (2015), 93–101.
Réjou-Méchain, M., Tanguy, A., Piponiot, C., Chave, J., Hérault, B., Biomass: an r package for estimating above-ground biomass and its uncertainty in tropical forests. Methods Ecol. Evol., 2017, 10.1111/2041-210X.12753.
Rutishauser, E., Hérault, B., Petronelli, P., Sist, P., Tree height reduction after selective logging in a tropical forest. Biotropica 48:3 (2016), 285–289.
Saatchi, S.S., Harris, N.L., Brown, S., Lefsky, M., Mitchard, E.T., Salas, W., Zutta, B.R., Buermann, W., Lewis, S.L., Hagen, S., Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. 108 (2011), 9899–9904.
Schneider, F.D., Leiterer, R., Morsdorf, F., Gastellu-Etchegorry, J.-P., Lauret, N., Pfeifer, N., Schaepman, M.E., Simulating imaging spectrometer data: 3D forest modeling based on LiDAR and in situ data. Remote Sens. Environ. 152 (2014), 235–250, 10.1016/j.rse.2014.06.015.
Singh, M., Malhi, Y., Bhagwat, S., Biomass estimation of mixed forest landscape using a Fourier transform texture-based approach on very-high-resolution optical satellite imagery. Int. J. Remote Sens. 35 (2014), 3331–3349, 10.1080/01431161.2014.903441.
Singh, M., Evans, D., Friess, D.A., Tan, B.S., Nin, C.S., Mapping above-ground biomass in a tropical forest in Cambodia using canopy textures derived from Google Earth. Remote Sens. 7 (2015), 5057–5076, 10.3390/rs70505057.
Slik, J.W., Paoli, G., McGuire, K., Amaral, I., Barroso, J., Bastian, M., Blanc, L., Bongers, F., Boundja, P., Clark, C., Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Glob. Ecol. Biogeogr. 22 (2013), 1261–1271.
Spies, T.A., Forest structure: a key to the ecosystem. Northwest Sci. 72 (1998), 34–36.
Stark, S.C., Enquist, B.J., Saleska, S.R., Leitold, V., Schietti, J., Longo, M., Alves, L.F., Camargo, P.B., Oliveira, R.C., Linking canopy leaf area and light environments with tree size distributions to explain Amazon forest demography. Ecol. Lett. 18:7 (2015), 636–645 http://dx.doi.org/10.1111/ele.12440.
Taubert, F., Jahn, M.W., Dobner, H.-J., Wiegand, T., Huth, A., The structure of tropical forests and sphere packings. Proc. Natl. Acad. Sci. 112 (2015), 15125–15129.
Véga, C., Vepakomma, U., Morel, J., Bader, J.L., Rajashekar, G., Jha, C.S., Dadhwal, V.K., Aboveground-biomass estimation of a complex tropical forest in India using lidar. Remote Sens. 7:8 (2015), 10607–10625.
Vieilledent, G., Gardi, O., Grinand, C., Burren, C., Andriamanjato, M., Camara, C., Gardner, C.J., Glass, L., Rasolohery, A., Rakoto Ratsimba, H., Gond, V., Rakotoarijaona, J.-R., Bioclimatic envelope models predict a decrease in tropical forest carbon stocks with climate change in Madagascar. J. Ecol. 104 (2016), 703–715, 10.1111/1365-2745.12548.
Vincent, G., Sabatier, D., Blanc, L., Chave, J., Weissenbacher, E., Pélissier, R., Fonty, E., Molino, J.-F., Couteron, P., Accuracy of small footprint airborne LiDAR in its predictions of tropical moist forest stand structure. Remote Sens. Environ. 125 (2012), 23–33.
Vincent, G., Sabatier, D., Rutishauser, E., Revisiting a universal airborne light detection and ranging approach for tropical forest carbon mapping: scaling-up from tree to stand to landscape. Oecologia 175 (2014), 439–443, 10.1007/s00442-014-2913-y.
Vincent, G., Antin, C., Laurans, M., Heurtebize, J., Durrieu, S., Lavalley, C., Dauzat, J., Mapping plant area index of tropical evergreen forest by airborne laser scanning. A cross-validation study using LAI2200 optical sensor. Remote Sens. Environment 198 (2017), 254–266.
Withmore, T.C., Tropical Rain Forest of the Far East. 1975, Claredon Prees Oxf. Univ. Prees Lond.
Wu, H., Zhang, J.-T., Nonparametric Regression Methods for Longitudinal Data Analysis: Mixed-effects Modeling Approaches. 2006, John Wiley & Sons.
Xu, L., Saatchi, S.S., Yang, Y., Yu, Y., White, L., Performance of non-parametric algorithms for spatial mapping of tropical forest structure. Carbon Balance Manag., 11, 2016, 10.1186/s13021-016-0062-9.
Zanne, A.E., Lopez-Gonzalez, G., Coomes, D.A., Ilic, J., Jansen, S., Lewis, S.L., Miller, R.B., Swenson, N.G., Wiemann, M.C., Chave, J., Data from: towards a worldwide wood economics spectrum. Dryad Digital Reposit, 2009.
Zhao, P., Lu, D., Wang, G., Wu, C., Huang, Y., Yu, S., Examining spectral reflectance saturation in Landsat imagery and corresponding solutions to improve forest aboveground biomass estimation. Remote Sens., 8, 2016, 469, 10.3390/rs8060469.
Zhou, J., Proisy, C., Descombes, X., Le Maire, G., Nouvellon, Y., Stape, J.-L., Viennois, G., Zerubia, J., Couteron, P., Mapping local density of young eucalyptus plantations by individual tree detection in high spatial resolution satellite images. For. Ecol. Manag. 301 (2013), 129–141.