Achard F, Beuchle R, Mayaux P et al (2014) Determination of tropical deforestation rates and related carbon losses from 1990 to 2010. Glob Change Biol 20:2540–2554. 10.1111/gcb.12605
Airbus (2018) Satellite imagery—the constellation. https://www.intelligence-airbusds.com/. Accessed 8 May 2018
Baccini A, Laporte N, Goetz SJ et al (2008) A first map of tropical Africa’s above-ground biomass derived from satellite imagery. Environ Res Lett 3(4):045011. 10.1088/1748-9326/3/4/045011
Bai T, Li D, Sun K et al (2016) Cloud Detection for high-resolution satellite imagery using machine learning and multi-feature fusion. Remote Sens 8:715. 10.3390/rs8090715
Baklanov A, Fritz S, Khachay M et al (2016) The cropland capture game: good annotators versus vote aggregation methods. Adv Comput Methods Knowl Eng AISC 453:167–180. 10.1007/978-3-319-38884-7_13
Baklanov A, Fritz S, Khachay M et al (2017) Vote aggregation techniques in the Geo-Wiki crowdsourcing game: a case study. Analysis of Images. Social Networks and Texts. Springer, Cham, pp 41–50
Baklanov A, Khachay M, Pasynkov M (2018a) Application of fully convolutional neural networks to mapping industrial oil palm plantations. Anal Images Soc Netw Texts LNCS 11179:155–167
Baklanov A, Khachay M, Pasynkov M (2018b) Fully convolutional neural networks for mapping oil palm plantations in Kalimantan. Learn Intell Optim LNCS 11353:427–432
Barbier N, Couteron P (2015) Attenuating the bidirectional texture variation of satellite images of tropical forest canopies. Remote Sens Environ 171:245–260. 10.1016/j.rse.2015.10.007
Barbier N, Proisy C, Véga C et al (2011) Bidirectional texture function of high resolution optical images of tropical forest: an approach using LiDAR hillshade simulations. Remote Sens Environ 115:167–179. 10.1016/j.rse.2010.08.015
Başeski E, Cenaras Ç (2015) Texture and color based cloud detection. In: 2015 7th international conference on recent advances in space technologies (RAST), pp 311–315
Bastin L, McInerney D, Revez G et al (2012) Web services for forest data, analysis and monitoring: developments from EuroGEOSS. In: Earthzine. https://earthzine.org/2012/07/25/web-services-for-forest-data-analysis-and-monitoring-developments-from-eurogeoss/. Accessed 5 Jun 2018
Bastin L, Buchanan G, Beresford A et al (2013) Open-source mapping and services for Web-based land-cover validation. Ecol Inform 14:9–16. 10.1016/j.ecoinf.2012.11.013
Bastin J-F, Barbier N, Couteron P, Adams B, Shapiro A, Bogaert J, De Cannière C (2014) Aboveground biomass mapping of African forest mosaics using canopy texture analysis: toward a regional approach. Ecol Appl 24(8):1984–2001. 10.1890/13-1574.1
Bastin J-F, Berrahmouni N, Grainger A et al (2017a) The extent of forest in dryland biomes. Science 356:635–638. 10.1126/science.aam6527
Bastin J-F, Mollicone D, Grainger A et al (2017b) Response to comment on “The extent of forest in dryland biomes”. Science 358:eaao2070. 10.1126/science.aao2070
Beresford AE, Eshiamwata GW, Donald PF et al (2013) Protection reduces loss of natural land-cover at sites of conservation importance across Africa. PLoS ONE 8:e65370. 10.1371/journal.pone.0065370
Bey A, Sánchez-Paus Díaz A, Maniatis D et al (2016) Collect earth: land use and land cover assessment through augmented visual interpretation. Remote Sens 8:807. 10.3390/rs8100807
Bilous A, Myroniuk V, Holiaka D et al (2017) Mapping growing stock volume and forest live biomass: a case study of the Polissya region of Ukraine. Environ Res Lett 12:105001. 10.1088/1748-9326/aa8352
Bontemps S, Defourny P, van Bogaert E et al (2011) GLOBCOVER 2009: products description and validation report
Boyd DS, Danson FM (2005) Satellite remote sensing of forest resources: three decades of research development. Prog Phys Geogr Earth Environ 29:1–26. 10.1191/0309133305pp432ra
Butler D (2006) The web-wide world. Nature 439:776–778
Chittilappilly AI, Chen L, Amer-Yahia S (2016) A survey of general-purpose crowdsourcing techniques. IEEE Trans Knowl Data Eng 28:2246–2266. 10.1109/TKDE.2016.2555805
Clark ML, Aide TM (2011) Virtual interpretation of earth web-interface tool (VIEW-IT) for collecting land-use/land-cover reference data. Remote Sens 3:601–620. 10.3390/rs3030601
Clark ML, Roberts DA, Clark DB (2005) Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote Sens Environ 96:375–398. 10.1016/j.rse.2005.03.009
Climate Change and Development Authority of Papau New Guinea (2017) Papua New Guinea’s national REDD+ forest reference level. Submission for UNFCCC technical assessment in 2017. http://redd.unfccc.int/files/png_frl__submission-15.01.2017.pdf. Accessed 1 June 2018
Coillie FMBV, Gardin S, Anseel F et al (2014) Variability of operator performance in remote-sensing image interpretation: the importance of human and external factors. Int J Remote Sens 35:754–778. 10.1080/01431161.2013.873152
Copernicus (2018) Copernicus open access hub. https://scihub.copernicus.eu/dhus/#/home
Curtis PG, Slay CM, Harris NL et al (2018) Classifying drivers of global forest loss. Science 361:1108–1111. 10.1126/science.aau3445
Defourny P, Vancustem C, Bicheron P et al (2006) GLOBCOVER: a 300 m global land cover product for 2005 using ENVISAT MERIS time series. In: Proceedings of the ISPRS commission VII mid-term symposium: remote sensing: from pixels to processes. Enscede NL
DiMiceli CM, Carroll ML, Sohlberg RA et al (2011) Annual global automated MODIS vegetation continuous fields (MOD44B) at 250 m spatial resolution for data years beginning Day 65, 2000–2010, collection 5 percent tree cover
Drusch M, Del Bello U, Carlier S et al (2012) Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens Environ 120:25–36. 10.1016/j.rse.2011.11.026
Duveiller G, Defourny P, Desclée B, Mayaux P (2008) Deforestation in central Africa: estimates at regional, national and landscape levels by advanced processing of systematically-distributed Landsat extracts. Remote Sens Environ 112:1969–1981. 10.1016/j.rse.2007.07.026
ESA (2018) The home of ESA earth online data. https://earth.esa.int/web/guest/data-access/
ESA CCI LC (2017) 300 m annual global land cover time series from 1992 to 2015 | ESA CCI land cover website. https://www.esa-landcover-cci.org/?q=node/175. Accessed 1 Jun 2017
Fan Z, Zhang W, Zhang D, Meng L (2017) An automatic accurate high-resolution satellite image retrieval method. Remote Sens 9:1092. 10.3390/rs9111092
Feng M, Sexton JO, Huang C et al (2016) Earth science data records of global forest cover and change: assessment of accuracy in 1990, 2000, and 2005 epochs. Remote Sens Environ 184:73–85. 10.1016/j.rse.2016.06.012
Foody G, See L, Fritz S et al (2018) Increasing the accuracy of crowdsourced information on land cover via a voting procedure weighted by information inferred from the contributed data. ISPRS Int J Geo-Inf 7:80. 10.3390/ijgi7030080
Friedl MA, Sulla-Menashe D, Tan B et al (2010) MODIS collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens Environ 114:168–182. 10.1016/j.rse.2009.08.016
Fritz S, McCallum I, Schill C et al (2009) Geo-Wiki.Org: the use of crowdsourcing to improve global land cover. Remote Sens 1(3):345–354
Fritz S, See L, van der Velde M et al (2013) Downgrading recent estimates of land available for biofuel production. Environ Sci Technol 47:1688–1694. 10.1021/es303141h
Fritz S, See L, McCallum I et al (2015) Mapping global cropland and field size. Glob Change Biol 21:1980–1992. 10.1111/gcb.12838
Fritz S, See L, Perger C et al (2017) A global dataset of crowdsourced land cover and land use reference data. Sci Data 4:170075. 10.1038/sdata.2017.75
Fu G, Liu C, Zhou R et al (2017) Classification for high resolution remote sensing imagery using a fully convolutional network. Remote Sens 9:498. 10.3390/rs9050498
Furusawa T, Pahari K, Umezaki M, Ohtsuka R (2004) Impacts of selective logging on New Georgia Island, Solomon Islands evaluated using very-high-resolution satellite (IKONOS) data. Environ Conserv 31:349–355. 10.1017/S0376892904001638
Garzon-Lopez CX, Bohlman SA, Olff H, Jansen PA (2013) Mapping tropical forest trees using high-resolution aerial digital photographs. Biotropica 45:308–316. 10.1111/btp.12009
GOFC-GOLD (2011) A sourcebook of methods and procedures for monitoring and reporting anthropogenic greenhouse gas emissions and removals caused by deforestation, gains and losses of carbon stocks in forests remaining forests, and forestation. Accessed 1 June 2018
Google (2018) Google earth downloaded more than one billion times. In: Google lat long. https://maps.googleblog.com/2011/10/google-earth-downloaded-more-than-one.html. Accessed 11 May 2018
Gorelick N, Hancher M, Dixon M et al (2017) Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens Environ 202:18–27. 10.1016/j.rse.2017.06.031
Hansen MC, Potapov PV, Moore R et al (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853. 10.1126/science.1244693
Harris (2018) Satellite imagery—geospatial data & imagery | Harris Geospatial. http://www.harrisgeospatial.com/DataImagery/SatelliteImagery.aspx. Accessed 11 May 2018
Hudson-Smith A, Batty M, Crooks A, Milton R (2009) Mapping for the masses: accessing web 2.0 through crowdsourcing. Soc Sci Comput Rev 27:524–538. 10.1177/0894439309332299
Hung NQV, Tam NT, Tran LN, Aberer K (2013) An evaluation of aggregation techniques in crowdsourcing. In: Lin X, Manolopoulos Y, Srivastava D, Huang G (eds) Web information systems engineering—WISE 2013. Springer, Berlin, pp 1–15
Hussin YA, Gilani H, van Leeuwen L et al (2014) Evaluation of object-based image analysis techniques on very high-resolution satellite image for biomass estimation in a watershed of hilly forest of Nepal. Appl Geomat 6:59–68. 10.1007/s12518-014-0126-z
IPCC (2006) 2006 IPCC guidelines for national greenhouse gas inventories. IGES, Hayama
Justice CO, Giglio L, Korontzi S et al (2002) The MODIS fire products. Remote Sens Environ 83:244–262. 10.1016/S0034-4257(02)00076-7
Karlson M, Reese H, Ostwald M (2014) Tree crown mapping in managed woodlands (Parklands) of semi-arid west Africa using WorldView-2 imagery and geographic object based image analysis. Sensors 14:22643–22669. 10.3390/s141222643
Kim MH, Madden M, Warner TA (2009) Forest type mapping using object-specific texture measures from multispectral Ikonos imagery: segmentation quality and image classification issues. PEampRS Photogramm Eng Amp Remote Sens 75:819–829
Laso Bayas JC, See L, Fritz S et al (2016) Crowdsourcing in-situ data on land cover and land use using gamification and mobile technology. Remote Sens 8:905. 10.3390/rs8110905
Laso Bayas JC, Lesiv M, Waldner F et al (2017a) A global reference database of crowdsourced cropland data collected using the Geo-Wiki platform. Sci Data 4:170136. 10.1038/sdata.2017.136
Laso Bayas JC, See L, Perger C et al (2017b) Validation of automatically generated global and regional cropland data sets: the case of Tanzania. Remote Sens 9:815
Lesiv M, Moltchanova E, Schepaschenko D et al (2016) Comparison of data fusion methods using crowdsourced data in creating a hybrid forest cover map. Remote Sens 8:261. 10.3390/rs8030261
Lesiv M, Laso Bayas JC, See L et al (2018a) Estimating the global distribution of field size using crowdsourcing. Glob Change Biol. 10.1111/gcb.14492
Lesiv M, See L, Laso Bayas JC et al (2018b) Characterizing the spatial and temporal availability of very high resolution satellite imagery in google earth and microsoft bing maps as a source of reference data. Land 7:118. 10.3390/land7040118
Lesiv M, Shvidenko A, Schepaschenko D et al (2018c) A spatial assessment of the forest carbon budget for Ukraine. Mitig Adapt Strateg Glob Change. 10.1007/s11027-018-9795-y
Li L, Lin W, Wang X et al (2016) No-reference image blur assessment based on discrete orthogonal moments. IEEE Trans Cybern 46:39–50. 10.1109/TCYB.2015.2392129
Lindquist EJ, D’Annunzio R, Gerrand A et al (2012) Global forest land-use change from 1990–2005. Food and Agriculture Organization of the United Nations, Rome
Maggiori E, Tarabalka Y, Charpiat G, Alliez P (2016) Fully convolutional neural networks for remote sensing image classification. In: 2016 IEEE international geoscience and remote sensing symposium (IGARSS), pp 5071–5074
Morton DC, Nagol J, Carabajal CC et al (2014) Amazon forests maintain consistent canopy structure and greenness during the dry season. Nature 506:221–224. 10.1038/nature13006
NASA (2018) Earth data. https://earthdata.nasa.gov/. Accessed 11 May 2018
Ontikov PV, Schepaschenko DG, Karminov VN et al (2016) Dynamics of the area of tree cover in the Moscow region for the years 2000-2013. For Herold 1:184–188
Paz P (2017) Drone monitoring of land cover changes detected by Terra-I in Yurimaguas, Peru. In: Terra-Iorg. http://www.terra-i.org/news/news/Drone-monitoring-of-land-cover-changes-detected-by-Terra-I-in-Yurimaguas–Peru.html. Accessed 11 May 2018
Pekel J-F, Vancutsem C, Bastin L et al (2014) A near real-time water surface detection method based on HSV transformation of MODIS multi-spectral time series data. Remote Sens Environ 140:704–716. 10.1016/j.rse.2013.10.008
Pengra B, Long J, Dahal D et al (2015) A global reference database from very high resolution commercial satellite data and methodology for application to Landsat derived 30 m continuous field tree cover data. Remote Sens Environ 165:234–248. 10.1016/j.rse.2015.01.018
Pithon S, Jubelin G, Guitet S, Gond V (2013) A statistical method for detecting logging-related canopy gaps using high-resolution optical remote sensing. Int J Remote Sens 34:700–711. 10.1080/01431161.2012.706719
Planet (2018) High resolution monitoring. In: Planet. https://planet.com/products/hi-res-monitoring/. Accessed 11 May 2018
Ploton P, Barbier N, Couteron P, Antin CM, Ayyappan N, Balachandran N, Barathan N, Bastin J-F, Chuyong G, Dauby G, Droissart V, Gastellu-Etchegorry J-P, Kamdem NG, Kenfack D, Libalah M, Mofack G, Momo ST, Pargal S, Petronelli P, Proisy C, Réjou-Méchain M, Sonké B, Texier N, Thomas D, Verley P, Zebaze Dongmo D, Berger U, Pélissier R (2017) Toward a general tropical forest biomass prediction model from very high resolution optical satellite images. Remote Sens Environ 200:140–153. 10.1016/j.rse.2017.08.001
Read JM, Clark DB, Venticinque EM, Moreira MP (2003) Application of merged 1-m and 4-m resolution satellite data to research and management in tropical forests. J Appl Ecol 40:592–600. 10.1046/j.1365-2664.2003.00814.x
Running SW, Nemani RR, Heinsch FA et al (2004) A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54:547–560
Saatchi SS, Harris NL, Brown S et al (2011) Benchmark map of forest carbon stocks in tropical regions across three continents. PNAS 108:9899–9904. 10.1073/pnas.1019576108
Salk CF, Sturn T, See L et al (2016) Assessing quality of volunteer crowdsourcing contributions: lessons from the Cropland Capture game. Int J Digit Earth 9:410–426. 10.1080/17538947.2015.1039609
Salk CF, Sturn T, See L, Fritz S (2017) Limitations of majority agreement in crowdsourced image interpretation. Trans GIS 21:207–223. 10.1111/tgis.12194
Sannier C, McRoberts RE, Fichet L-V (2016) Suitability of global forest change data to report forest cover estimates at national level in Gabon. Remote Sens Environ 173:326–338. 10.1016/j.rse.2015.10.032
Santoro M, Beaudoin A, Beer C et al (2015) Forest growing stock volume of the northern hemisphere: spatially explicit estimates for 2010 derived from Envisat ASAR. Remote Sens Environ 168:316–334. 10.1016/j.rse.2015.07.005
Schepaschenko D, Kraxner F, See L et al (2015a) Global biomass information: from data generation to application. In: Yan J (ed) Handbook of clean energy systems. Wiley, New York, pp 11–33
Schepaschenko D, See L, Lesiv M et al (2015b) Development of a global hybrid forest mask through the synergy of remote sensing, crowdsourcing and FAO statistics. Remote Sens Environ 162:208–220. 10.1016/j.rse.2015.02.011
Schepaschenko D, Fritz S, See L et al (2017) Comment on “The extent of forest in dryland biomes”. Science 358:eaao0166. 10.1126/science.aao0166
See L, Comber A, Salk C et al (2013) Comparing the quality of crowdsourced data contributed by expert and non-experts. PLoS ONE 8:e69958. 10.1371/journal.pone.0069958
See L, Fritz S, Perger C et al (2015a) Harnessing the power of volunteers, the internet and Google Earth to collect and validate global spatial information using Geo-Wiki. Technol Forecast Soc Change 98:324–335. 10.1016/j.techfore.2015.03.002
See L, Schepaschenko D, Lesiv M et al (2015b) Building a hybrid land cover map with crowdsourcing and geographically weighted regression. ISPRS J Photogramm Remote Sens 103:48–56. 10.1016/j.isprsjprs.2014.06.016
See L, Fritz S, Perger C et al (2016) Mapping human impact using crowdsourcing. Mapping Wilderness. Springer, Dordrecht, pp 89–101
See L, Laso Bayas JC, Schepaschenko D et al (2017) LACO-Wiki: a new online land cover validation tool demonstrated using GlobeLand30 for Kenya. Remote Sens 9:754. 10.3390/rs9070754
Sexton JO, Song X-P, Feng M et al (2013) Global, 30-m resolution continuous fields of tree cover: landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. Int J Digit Earth 6:427–448. 10.1080/17538947.2013.786146
Sexton JO, Noojipady P, Song X-P et al (2016) Conservation policy and the measurement of forests. Nat Clim Change 6:192–196. 10.1038/nclimate2816
Sheppard SRJ, Cizek P (2009) The ethics of Google Earth: crossing thresholds from spatial data to landscape visualisation. J Environ Manage 90:2102–2117. 10.1016/j.jenvman.2007.09.012
Simard M, Pinto N, Fisher JB, Baccini A (2011) Mapping forest canopy height globally with spaceborne lidar. J Geophys Res Biogeosciences 116:45. 10.1029/2011jg001708
Simonetti D, Beuchle R, Eva H (2011) User manual for the JRC land cover/use change validation tool. Publications Office of the European Union, Ispra
Simonetti D, Marelli A, Eva H (2015) IMPACT: portable GIS toolbox for image processing and land cover mapping—EU Science Hub—European Commission. Publications Of fice of the European Union, Luxembourg
Solano-Correa YT, Bovolo F, Bruzzone L (2018) An approach for unsupervised change detection in multitemporal VHR Images acquired by different multispectral sensors. Remote Sens 10:533. 10.3390/rs10040533
Sturn T, Wimmer M, Salk C et al (2015) Cropland capture—a game for improving global cropland maps. In: Foundation of digital games conference (FDG 2015). Pacific Grove, CA
Sy VD, Herold M, Achard F et al (2015) Land use patterns and related carbon losses following deforestation in South America. Environ Res Lett 10:124004. 10.1088/1748-9326/10/12/124004
Szantoi Z, Brink A, Buchanan G et al (2016) A simple remote sensing based information system for monitoring sites of conservation importance. Remote Sens Ecol Conserv 2:16–24. 10.1002/rse2.14
Thurner M, Beer C, Santoro M et al (2014) Carbon stock and density of northern boreal and temperate forests. Glob Ecol Biogeogr 23:297–310. 10.1111/geb.12125
Tong H, Li M, Zhang H, Zhang C (2004) Blur detection for digital images using wavelet transform. In: 2004 IEEE international conference on multimedia and expo (ICME) (IEEE Cat. No.04TH8763), vol 1, pp 17–20
USGS (2018) EarthExplorer. https://earthexplorer.usgs.gov/. Accessed 11 May 2018
Valérie T, Marie-Pierre J (2006) Tree species identification on large-scale aerial photographs in a tropical rain forest, French Guiana—application for management and conservation. For Ecol Manag 225:51–61. 10.1016/j.foreco.2005.12.046
Waldner F, Schucknecht A, Lesiv M et al (2018) Toward seamless integration of expert and non-expert reference data to validate global binary thematic maps. Submitt Remote Sens Environ 221:235–246
Wulder MA, Masek JG, Cohen WB et al (2012) Opening the archive: how free data has enabled the science and monitoring promise of Landsat. Remote Sens Environ 122:2–10. 10.1016/j.rse.2012.01.010
Zahawi RA, Dandois JP, Holl KD et al (2015) Using lightweight unmanned aerial vehicles to monitor tropical forest recovery. Biol Conserv 186:287–295. 10.1016/j.biocon.2015.03.031
Zhu Z, Woodcock CE (2012) Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens Environ 118:83–94. 10.1016/j.rse.2011.10.028