Basler, D. (2016). Evaluating phenological models for the prediction of leaf-out dates in six temperate tree species across central Europe. Agricultural and Forest Meteorology, 217, 10–21. https://doi.org/10.1016/j.agrformet.2015.11.007
Beer, C., Weber, U., Tomelleri, E., Carvalhais, N., Mahecha, M., & Reichstein, M. (2014). Harmonized European long-term climate data for assessing the effect of changing temporal variability on land-atmosphere CO2 fluxes. Journal of Climate, 27(13), 4815–4834. https://doi.org/10.1175/JCLI-D-13-00543.1
Brelsford, C. C., & Robson, T. M. (2018). Blue light advances bud burst in branches of three deciduous tree species under short-day conditions. Trees, 32(4), 1157–1164. https://doi.org/10.1007/s00468-018-1684-1
Chen, M., Melaas, E. K., Gray, J. M., Friedl, M. A., & Richardson, A. D. (2016). A new seasonal-deciduous spring phenology submodel in the Community Land Model 4.5: Impacts on carbon and water cycling under future climate scenarios. Global Change Biology, 22(11), 3675–3688. https://doi.org/10.1111/gcb.13326
Chuine, I. (2010). Why does phenology drive species distribution? Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1555), 3149–3160. https://doi.org/10.1098/rstb.2010.0142
Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N., Best, M. J., … Cox, P. M. (2011). The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics. Geoscientific Model Development, 4(3), 701–722. https://doi.org/10.5194/gmd-4-701-2011
Cook, B. I., Wolkovich, E. M., Davies, T. J., Ault, T. R., Betancourt, J. L., Allen, J. M., … Travers, S. E. (2012). Sensitivity of spring phenology to warming across temporal and spatial climate gradients in two independent databases. Ecosystems, 15(8), 1283–1294. https://doi.org/10.1007/s10021-012-9584-5
Coville, F. V. (1920). The influence of cold in stimulating the growth of plants. Proceedings of the National Academy of Sciences of the United States of America, 6(2), 151–160. https://doi.org/10.1175/1520-0493(1920)48<643b:TIOCIS>2.0.CO;2
Delpierre, N., Dufrêne, E., Soudani, K., Ulrich, E., Cecchini, S., Boé, J., & François, C. (2009). Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France. Agricultural and Forest Meteorology, 149(6–7), 938–948. https://doi.org/10.1016/j.agrformet.2008.11.014
Forsythe, W. C., Rykiel, E. J., Stahl, R. S., Wu, H., & Schoolfield, R. M. (1995). A model comparison for daylength as a function of latitude and day of year. Ecological Modelling, 80(1), 87–95. https://doi.org/10.1016/0304-3800(94)00034-F
Fox, J. (2016). Applied regression analysis and generalized linear models. Hamilton, Canada: McMaster University.
Fu, Y. H., Campioli, M., Van Oijen, M., Deckmyn, G., & Janssens, I. A. (2012). Bayesian comparison of six different temperature-based budburst models for four temperate tree species. Ecological Modelling, 230, 92–100. https://doi.org/10.1016/j.ecolmodel.2012.01.010
Fu, Y. H., Campioli, M., Vitasse, Y., De Boeck, H. J., Van den Berge, J., AbdElgawad, H., … Janssens, I. A. (2014). Variation in leaf flushing date influences autumnal senescence and next year's flushing date in two temperate tree species. Proceedings of the National Academy of Sciences of the United States of America, 111(20), 7355–7360. https://doi.org/10.1073/pnas.1321727111
Fu, Y. H., Liu, Y., De Boeck, H. J., Menzel, A., Nijs, I., Peaucelle, M., … Janssens, I. A. (2016). Three times greater weight of daytime than of night-time temperature on leaf unfolding phenology in temperate trees. New Phytologist, 212(3), 590–597. https://doi.org/10.1111/nph.14073
Fu, Y. H., Zhang, X., Piao, S., Hao, F., Geng, X., Vitasse, Y., … Janssens, I. A. (2019). Daylength helps temperate deciduous trees to leaf-out at the optimal time. Global Change Biology, 25(7), 2410–2418. https://doi.org/10.1111/gcb.14633
Fu, Y. H., Zhao, H., Piao, S., Peaucelle, M., Peng, S., Zhou, G., … Janssens, I. A. (2015). Declining global warming effects on the phenology of spring leaf unfolding. Nature, 526, 104. https://doi.org/10.1038/nature15402
Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., … Townshend, J. R. G. (2013). High-resolution global maps of 21st-century forest cover change. Science, 342(6160), 850–853. https://doi.org/10.1126/science.1244693
Heide, O. M. (1993a). Daylength and thermal time responses of budburst during dormancy release in some northern deciduous trees. Physiologia Plantarum, 88(4), 531–540.
Heide, O. M. (1993b). Dormancy release in beech buds (Fagus sylvatica) requires both chilling and long days. Physiologia Plantarum, 89(1), 187–191. https://doi.org/10.1111/j.1399-3054.1993.tb01804.x
Heide, O. M. (2003). High autumn temperature delays spring bud burst in boreal trees, counterbalancing the effect of climatic warming. Tree Physiology, 23(13), 931–936. https://doi.org/10.1093/treephys/23.13.931
Hempel, S., Frieler, K., Warszawski, L., Schewe, J., & Piontek, F. (2013). A trend-preserving bias correction – The ISI-MIP approach. Earth System Dynamics, 4(2), 219–236. https://doi.org/10.5194/esd-4-219-2013
Hufkens, K., Basler, D., Milliman, T., Melaas, E. K., & Richardson, A. D. (2018). An integrated phenology modelling framework in r. Methods in Ecology and Evolution, 9(5), 1276–1285. https://doi.org/10.1111/2041-210X.12970
Hunter, A. F., & Lechowicz, M. J. (1992). Predicting the timing of budburst in temperate trees. Journal of Applied Ecology, 29, 597–604. https://doi.org/10.2307/2404467
Keenan, T. F., Gray, J., Friedl, M. A., Toomey, M., Bohrer, G., Hollinger, D. Y., … Richardson, A. D. (2014). Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nature Climate Change, 4(7), 598–604. https://doi.org/10.1038/nclimate2253
Körner, C., & Basler, D. (2010). Phenology under global warming. Science, 327(5972), 1461–1462. https://doi.org/10.1126/science.1186473
Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher, J., Friedlingstein, P., … Prentice, I. C. (2005). A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochemical Cycles, 19(1), 1–33. https://doi.org/10.1029/2003GB002199
Lamarque, J.-F., Dentener, F., McConnell, J., Ro, C.-U., Shaw, M., Vet, R., … Nolan, M. (2013). Multi-model mean nitrogen and sulfur deposition from the atmospheric chemistry and climate model intercomparison project (ACCMIP): Evaluation of historical and projected future changes. Atmospheric Chemistry and Physics, 13(16), 7997–8018. https://doi.org/10.5194/acp-13-7997-2013
Laube, J., Sparks, T. H., Estrella, N., Höfler, J., Ankerst, D. P., & Menzel, A. (2014). Chilling outweighs photoperiod in preventing precocious spring development. Global Change Biology, 20(1), 170–182. https://doi.org/10.1111/gcb.12360
Luedeling, E., Girvetz, E. H., Semenov, M. A., & Brown, P. H. (2011). Climate change affects winter chill for temperate fruit and nut trees. PLoS ONE, 6(5), e20155. https://doi.org/10.1371/journal.pone.0020155
Menzel, A., & Fabian, P. (1999). Growing season extended in Europe. Nature, 397(6721), 659. https://doi.org/10.1038/17709
Niinemets, Ü., & Valladares, F. (2006). Tolerance to shade, drought, and waterlogging of temperate Northern Hemisphere trees and shrubs. Ecological Monographs, 76(4), 521–547. https://doi.org/10.1890/0012-9615(2006)076[0521:TTSDAW]2.0.CO;2
Nishina, K., Ito, A., Falloon, P., Friend, A. D., Beerling, D. J., Ciais, P., … Yokohata, T. (2015). Decomposing uncertainties in the future terrestrial carbon budget associated with emission scenarios, climate projections, and ecosystem simulations using the ISI-MIP results. Earth System Dynamics, 6(2), 435–445. https://doi.org/10.5194/esd-6-435-2015
Piao, S., Tan, J., Chen, A., Fu, Y. H., Ciais, P., Liu, Q., … Peñuelas, J. (2015). Leaf onset in the northern hemisphere triggered by daytime temperature. Nature Communications, 6(1). https://doi.org/10.1038/ncomms7911
Piñeiro, G., Perelman, S., Guerschman, J. P., & Paruelo, J. M. (2008). How to evaluate models: Observed vs. predicted or predicted vs. observed? Ecological Modelling, 216(3–4), 316–322. https://doi.org/10.1016/j.ecolmodel.2008.05.006
Polgar, C., Gallinat, A., & Primack, R. B. (2014). Drivers of leaf-out phenology and their implications for species invasions: Insights from Thoreau's Concord. New Phytologist, 202(1), 106–115. https://doi.org/10.1111/nph.12647
Richardson, A. D., Andy Black, T., Ciais, P., Delbart, N., Friedl, M. A., Gobron, N., … Varlagin, A. (2010). Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1555), 3227–3246. https://doi.org/10.1098/rstb.2010.0102
Richardson, A. D., Hufkens, K., Milliman, T., Aubrecht, D. M., Furze, M. E., Seyednasrollah, B., … Hanson, P. J. (2018). Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature, 560(7718), 368–371. https://doi.org/10.1038/s41586-018-0399-1
Richardson, A. D., Keenan, T. F., Migliavacca, M., Ryu, Y., Sonnentag, O., & Toomey, M. (2013). Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology, 169, 156–173. https://doi.org/10.1016/j.agrformet.2012.09.012
Schaber, J., & Badeck, F. W. (2003). Physiology-based phenology models for forest tree species in Germany. International Journal of Biometeorology, 47(4), 193–201. https://doi.org/10.1007/s00484-003-0171-5
Smith, B., Wärlind, D., Arneth, A., Hickler, T., Leadley, P., Siltberg, J., & Zaehle, S. (2014). Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences, 11(7), 2027–2054. https://doi.org/10.5194/bg-11-2027-2014
Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Proceedings of the Royal Society B: Biological Sciences, 36(2), 111–174.
Sykes, M. T., Prentice, I. C., & Cramer, W. (1996). A bioclimatic model for the potential distributions of north European tree species under present and future climates. Journal of Biogeography, 23(2), 203–233.
Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4), 485–498. https://doi.org/10.1175/BAMS-D-11-00094.1
Templ, B., Koch, E., Bolmgren, K., Ungersböck, M., Paul, A., Scheifinger, H., … Zust, A. (2018). Pan European Phenological database (PEP725): A single point of access for European data. International Journal of Biometeorology, 62(6), 1109–1113. https://doi.org/10.1007/s00484-018-1512-8
Tsallis, C., & Stariolo, D. A. (1996). Generalized simulated annealing. Physica A: Statistical Mechanics and Its Applications, 233(1–2), 395–406. https://doi.org/10.1016/S0378-4371(96)00271-3
Vitasse, Y. (2013). Ontogenic changes rather than difference in temperature cause understory trees to leaf out earlier. New Phytologist, 198(1), 149–155. https://doi.org/10.1111/nph.12130
Vitasse, Y., & Basler, D. (2013). What role for photoperiod in the bud burst phenology of European beech. European Journal of Forest Research, 132(1), 1–8. https://doi.org/10.1007/s10342-012-0661-2
Vitasse, Y., Schneider, L., Rixen, C., Christen, D., & Rebetez, M. (2018). Increase in the risk of exposure of forest and fruit trees to spring frosts at higher elevations in Switzerland over the last four decades. Agricultural and Forest Meteorology, 248, 60–69. https://doi.org/10.1016/j.agrformet.2017.09.005
Vitasse, Y., Signarbieux, C., & Fu, Y. H. (2017). Global warming leads to more uniform spring phenology across elevations. Proceedings of the National Academy of Sciences of the United States of America, 115(5), 1004–1008. https://doi.org/10.1073/pnas.1717342115
Xiang, Y., Gubian, S., Suomela, B., & Hoeng, J. (2013). Generalized simulated annealing for global optimization: The GenSA Package. R Journal, 5(June), 13–28. https://doi.org/10.1007/s10792-010-9404-x
Yu, H., Luedeling, E., & Xu, J. (2010). Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 107(51), 22151–22156. https://doi.org/10.1073/pnas.1012490107
Zohner, C. M., Benito, B. M., Fridley, J. D., Svenning, J. C., & Renner, S. S. (2017). Spring predictability explains different leaf-out strategies in the woody floras of North America, Europe and East Asia. Ecology Letters, 20(4), 452–460. https://doi.org/10.1111/ele.12746
Zohner, C. M., Benito, B. M., Svenning, J. C., & Renner, S. S. (2016). Day length unlikely to constrain climate-driven shifts in leaf-out times of northern woody plants. Nature Climate Change, 6(12), 1120–1123. https://doi.org/10.1038/nclimate3138
Zohner, C. M., Mo, L., & Renner, S. S. (2018). Global warming reduces leaf-out and flowering synchrony among individuals. eLife, 7, e40214. https://doi.org/10.7554/eLife.40214
Zohner, C. M., Mo, L., Renner, S. S., Svenning, J.-C., Vitasse, Y., Benito, B. M., … Crowther, T. W. (2020). Late spring-frost risk between 1959 and 2017 decreased in North America, but increased in Europe and Asia. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.1920816117
Zohner, C. M., Mo, L., Sebald, V., & Renner, S. S. (2020). Leaf-out in northern ecotypes of wide-ranging trees requires less spring warming, enhancing the risk of spring frost damage at cold range limits. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13088
Zohner, C. M., & Renner, S. S. (2014). Common garden comparison of the leaf-out phenology of woody species from different native climates, combined with herbarium records, forecasts long-term change. Ecology Letters, 17(8), 1016–1025. https://doi.org/10.1111/ele.12308
Zohner, C. M., & Renner, S. S. (2015). Perception of photoperiod in individual buds of mature trees regulates leaf-out. New Phytologist, 208(4), 1023–1030. https://doi.org/10.1111/nph.13510