[en] NASA's Global Ecosystem Dynamics Investigation (GEDI) is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate estimates of forest aboveground biomass density (AGBD). This paper presents the development of the models used to create GEDI's footprint-level (~25 m) AGBD (GEDI04_A) product, including a description of the datasets used and the procedure for final model selection. The data used to fit our models are from a compilation of globally distributed spatially and temporally coincident field and airborne lidar datasets, whereby we simulated GEDI-like waveforms from airborne lidar to build a calibration database. We used this database to expand the geographic extent of past waveform lidar studies, and divided the globe into four broad strata by Plant Functional Type (PFT) and six geographic regions. GEDI's waveform-to-biomass models take the form of parametric Ordinary Least Squares (OLS) models with simulated Relative Height (RH) metrics as predictor variables. From an exhaustive set of candidate models, we selected the best input predictor variables, and data transformations for each geographic stratum in the GEDI domain to produce a set of comprehensive predictive footprint-level models. We found that model selection frequently favored combinations of RH metrics at the 98th, 90th, 50th, and 10th height above ground-level percentiles (RH98, RH90, RH50, and RH10, respectively), but that inclusion of lower RH metrics (e.g. RH10) did not markedly improve model performance. Second, forced inclusion of RH98 in all models was important and did not degrade model performance, and the best performing models were parsimonious, typically having only 1-3 predictors. Third, stratification by geographic domain (PFT, geographic region) improved model performance in comparison to global models without stratification. Fourth, for the vast majority of strata, the best performing models were fit using square root transformation of field AGBD and/or height metrics. There was considerable variability in model performance across geographic strata, and areas with sparse training data and/or high AGBD values had the poorest performance. These models are used to produce global predictions of AGBD, but will be improved in the future as more and better training data become available.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Duncanson, Laura; University of Maryland, College Park, College Park, United States
Kellner, James R.; Brown University, Providence, United States
Armston, John; University of Maryland, College Park, College Park, United States
Dubayah, Ralph; University of Maryland, College Park, College Park, United States
Minor, David M.; University of Maryland, College Park, College Park, United States
Hancock, Steven; University of Edinburgh, Edinburgh, United Kingdom
Healey, Sean P.; USDA Forest Service, Ogden, United States
Patterson, Paul L.; USDA Forest Service, Ogden, United States
Saarela, Svetlana; Swedish University of Agricultural Sciences, Umeå, Sweden ; Norwegian University of Life Sciences, Ås, Norway
Marselis, Suzanne; University of Maryland, College Park, College Park, United States
Silva, Carlos E.; University of Maryland, College Park, College Park, United States
Bruening, Jamis; University of Maryland, College Park, College Park, United States
Goetz, Scott J.; Northern Arizona University, Flagstaff, United States
Tang, Hao; University of Maryland, College Park, College Park, United States ; Department of Geography, National University of Singapore, Singapore
Hofton, Michelle; University of Maryland, College Park, College Park, United States
Blair, Bryan; NASA Goddard Space Flight Center, Greenbelt, United States
Luthcke, Scott; NASA Goddard Space Flight Center, Greenbelt, United States
Fatoyinbo, Lola; NASA Goddard Space Flight Center, Greenbelt, United States
Abernethy, Katharine; University of Stirling, Stirling, United Kingdom ; Institut de Recherche en Ecologie Tropicale, CENAREST, Libreville, Gabon
Alonso, Alfonso; Smithsonian Conservation Biology Institute, Washington, United States
Andersen, Hans-Erik; USDA Forest Service, Pacific Northwest Research Station, University of Washington, Seattle, United States
Aplin, Paul; Edge Hill University, Lancashire, United Kingdom
Baker, Timothy R.; University of Leeds, Leeds, United Kingdom
Biber, Peter; Technical University Munich, Munich, Germany
Boeckx, Pascal; Ghent University, Gent, Belgium
Bogaert, Jan ; Université de Liège - ULiège > Département GxABT > Biodiversité et Paysage
Boschetti, Luigi; University of Idaho, Moscow, United States
Boucher, Peter Brehm; Harvard University, United States
Boyd, Doreen S.; University of Nottingham, University Park, Nottingham, United Kingdom
Burslem, David F.R.P.; University of Aberdeen, Aberdeen, Scotland, United Kingdom
Calvo-Rodriguez, Sofia; University of Alberta, Edmonton, Canada
Chave, Jérôme; Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174 (CNRS/IRD/UPS), Toulouse Cedex 9, France ; Université Toulouse, France
Chazdon, Robin L.; University of Connecticut, Storrs, United States ; University of the Sunshine Coast, Sippy Downs, Australia
Clark, David B.; University of Missouri-St. Louis, One University Boulevard, St. Louis, United States
Clark, Deborah A.; University of Missouri-St. Louis, One University Boulevard, St. Louis, United States
Cohen, Warren B.; USDA Forest Service, Pacific Northwest Research Station, Corvallis, United States
Coomes, David A.; University of Cambridge, Downing Street, Cambridge, United Kingdom
Corona, Piermaria; Council for Agricultural Research and Economics, Arezzo, Italy ; University of Tuscia, via San Camillo de Lellis, Viterbo, Italy
Cushman, K.C.; Brown University, Providence, United States ; Smithsonian Tropical Research Institute, Ancón, Panama
Cutler, Mark E.J.; University of Dundee, Dundee, United Kingdom
Dalling, James W.; Smithsonian Tropical Research Institute, Ancón, Panama ; University of Illinois at Urbana-Champaign, Urbana, United States
Dalponte, Michele; Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
Dash, Jonathan; Scion New Zealand Forest Research Institute, New Zealand
de-Miguel, Sergio; University of Lleida, Lleida, Spain ; Joint Research Unit CTFC - AGROTECNIO - CERCA, Solsona, Spain
Deng, Songqiu; Shinshu University, Nagano, Japan
Ellis, Peter Woods; The Nature Conservancy, Arlington, United States
Erasmus, Barend; University of the Witwatersrand, Johannesburg, South Africa ; University of Pretoria, Pretoria, South Africa
Fekety, Patrick A.; Colorado State University, Fort Collins, United States
Fernandez-Landa, Alfredo; Agresta Sociedad Cooperativa, Soria, Spain
Ferraz, Antonio; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, United States ; University of California, Los Angeles, United States
Fischer, Rico; Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
Fisher, Adrian G.; University of New South Wales, Sydney, Australia ; University of Queensland, Brisbane, Australia
García-Abril, Antonio; Universidad Politécnica de Madrid (UPM), Madrid, Spain
Gobakken, Terje; Norwegian University of Life Sciences, Ås, Norway
Hacker, Jorg M.; Airborne Research Australia, Australia ; Flinders University, Adelaide, Australia
Heurich, Marco; Bavarian Forest National Park, Grafenau, Germany ; University of Freiburg, Freiburg, Germany ; Inland Norway University of Applied Sciences, Koppang, Norway
Hill, Ross A.; Bournemouth University, Dorset, United Kingdom
Hopkinson, Chris; University of Lethbridge, 4401 University Drive, Lethbridge, Canada
Huang, Huabing; School of Geospatial Engineering and Science, Sun Yat-Sen University, Guangzhou, China
Hubbell, Stephen P.; Smithsonian Tropical Research Institute, Ancón, Panama ; University of California, Los Angeles, United States
Hudak, Andrew T.; USDA Forest Service, Rocky Mountain Research Station, Moscow, United States
Huth, Andreas; Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany ; University of Osnabrück, Osnabrück, Germany ; German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
Imbach, Benedikt; Aeroscout, Switzerland
Jeffery, Kathryn J.; University of Stirling, Stirling, United Kingdom
Kenfack, David; Smithsonian Tropical Research Institute, Ancón, Panama
Kljun, Natascha; Lund University, Centre for Environmental and Climate Science, Lund, Sweden
Knapp, Nikolai; Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany ; Thünen Institute of Forest Ecosystems, Eberswalde, Germany
Král, Kamil; The Silva Tarouca Research Institute, Brno, Czech Republic
Krůček, Martin; The Silva Tarouca Research Institute, Brno, Czech Republic
Labrière, Nicolas; Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174 (CNRS/IRD/UPS), Toulouse Cedex 9, France
Lewis, Simon L.; University of Leeds, Leeds, United Kingdom ; University College London, London, United Kingdom
Longo, Marcos; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, United States ; Embrapa Agricultural Informatics, Campinas, Brazil
Lucas, Richard M.; Aberystwyth University, Aberystwyth, United Kingdom
Main, Russell; University of Pretoria, Pretoria, South Africa ; Council for Scientific and Industrial Research, Pretoria, South Africa
Manzanera, Jose A.; Universidad Politécnica de Madrid, Ciudad Universitaria, Madrid, Spain
Martínez, Rodolfo Vásquez; Jardín Botánico de Missouri, Peru
Mathieu, Renaud; University of Pretoria, Pretoria, South Africa ; International Rice Research Institute, Los Baños, Philippines
Memiaghe, Herve; Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174 (CNRS/IRD/UPS), Toulouse Cedex 9, France ; University of Oregon, Eugene, United States
Meyer, Victoria; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, United States ; Terraformation, Kamuela, United States
Mendoza, Abel Monteagudo; Jardín Botánico de Missouri, Peru ; Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
Monerris, Alessandra; University of Melbourne, Parkville, Australia
Montesano, Paul; NASA Goddard Space Flight Center, Greenbelt, United States ; Science Systems and Applications, Inc. (SSAI), Lanham, United States
Morsdorf, Felix; Department of Geography, University of Zürich, Zürich, Switzerland
Næsset, Erik; Norwegian University of Life Sciences, Ås, Norway
Naidoo, Laven; Council for Scientific and Industrial Research, Pretoria, South Africa
Nilus, Reuben; Sabah Forestry Department, Sandakan, Malaysia
O'Brien, Michael; Universidad Rey Juan Carlos, Móstoles, Spain
Orwig, David A.; Harvard University, Petersham, United States
Papathanassiou, Konstantinos; DLR, Bonn, Germany
Parker, Geoffrey; Smithsonian Environmental Research Center, United States
Philipson, Christopher; ETH Zürich, Zürich, Switzerland ; Permian Global, London
Phillips, Oliver L.; University of Leeds, Leeds, United Kingdom
Pisek, Jan; University of Tartu, Tartu Observatory, Toravere, Estonia
Poulsen, John R.; Duke University, United States
Pretzsch, Hans; Technical University Munich, Munich, Germany
Rüdiger, Christoph; Monash University, Department of Civil Engineering, 23 College Walk, Clayton, Australia ; Bureau of Meteorology, Docklands, Australia
Saatchi, Sassan; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, United States
Sanchez-Azofeifa, Arturo; University of Alberta, Edmonton, Canada
Sanchez-Lopez, Nuria; University of Idaho, Moscow, United States
Scholes, Robert; University of the Witwatersrand, Johannesburg, South Africa
Silva, Carlos A.; University of Florida, Gainesville, United States
Simard, Marc; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, United States
Skidmore, Andrew; University of Twente, Enschede, Netherlands
Stereńczak, Krzysztof; Forest Research Institute, Raszyn, Poland
Tanase, Mihai; University of Melbourne, Parkville, Australia
Torresan, Chiara; Council for Agricultural Research and Economics, Arezzo, Italy ; Institute of BioEconomy - National Research Council of Italy, San Michele all'Adige, Italy
Valbuena, Ruben; Swedish University of Agricultural Sciences, Umeå, Sweden ; Bangor University, Bangor, United Kingdom
Verbeeck, Hans; Ghent University, Gent, Belgium
Vrska, Tomas; The Silva Tarouca Research Institute, Brno, Czech Republic
Wessels, Konrad; George Mason University, Fairfax, United States
White, Lee J.T.; University of Stirling, Stirling, United Kingdom ; Ministry of Forests, Sea, the Environment and Climate Change, Boulevard Triomphal Omar BONGO, Libreville, Gabon
Zahabu, Eliakimu; The Sokoine University of Agriculture, Morogoro, Tanzania
DOS - United States Department of State EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária USAID - United States Agency for International Development NSF - National Science Foundation USFS - US Forest Service UMB - University of Maryland Baltimore NASA - National Aeronautics and Space Administration ARC - Australian Research Council
Funding text :
Armston, Kellner, Hancock, and Dubayah were supported by NASA Contract #NNL 15AA03C to the University of Maryland for the development and execution of the GEDI mission. Duncanson and Minor were supported by a NASA GEDI Science Team Grant NNH20ZDA001N and a NASA Post Doctoral Program fellowship. Saarela was supported through NASA Carbon Monitoring System Grant 80HQTR18T0016 , and Healey and Patterson were funded by the GEDI mission through Interagency Agreement RPO201523 . We thank the NASA Terrestrial Ecology program for continued support of the GEDI mission, and the University of Maryland for providing independent financial support of the GEDI mission. We also thank NASA for contributing to several lidar data collections used in this study, including from the NASA Carbon Monitoring System (Grant number NNH13AW621 , to PI Cohen at the USFS Service). We also gratefully acknowledge the collection and provision of field and airborne data from a wide variety of other sources, including by the Sustainable Landscapes Brazil project supported by the Brazilian Agricultural Research Corporation (EMBRAPA) , the US Forest Service, the National Science Foundation ( DEB 0939907 ), Smithsonian Tropical Research Institute, USAID, and the US Department of State, among others. Additional data were acquired from the Terrestrial Ecosystem Research Network (TERN), an Australian Government NCRIS-enabled research infrastructure project, for provision of data used in this analysis, and from the National Ecological Observatory Network (NEON), a program sponsored by the National Science Foundation and operated under cooperative agreement by Battelle. We also thank the National Science and Engineering Research Council of Canada (NSERC), Discovery Grant Program (PI Sanchez-Azofeifa). We also thank the Spanish institutions and programs Instituto Geográfico Nacional, Organismo Autónomo de Parques Nacionales and Inventario Forestal Nacional for supporting this science with open data. The Council for Scientific and Industrial Research (CSIR) project "National Woody Vegetation Monitoring System for Ecosystem and Value-added Services" contributed to the collection of South African ALS and field data. We also thank the Sabie Sand Wildtuin, South African National Parks (SANPARKS), the Wits Rural Knowledge Hub and the Bushbuckridge Municipality in South Africa, for support in the South African field data collection. Additional Australian data were collected as part of the SMAPEx project funded by an Australian Research Council Discovery Project ( DP0984586 ). We thank Shell Gabon and the Smithsonian Conservation Biology Institute for funding the Rabi plot in Gabon, which is contribution No. 204 of the Gabon Biodiversity Program. We also acknowledge funding in French Guiana from CNES and "Investissement d'Avenir" grants managed by Agence Nationale de la Recherche (CEBA, ref. ANR-10-LABX-25-01). We thank the Project LIFE+ ForBioSensing PL “Comprehensive monitoring of stand dynamics in Białowieża Forest supported with remote sensing techniques" co-funded by Life Plus (contract number LIFE13 ENV/PL/000048) and Poland’s National Fund for Environmental Protection and Water Management (contract number 485/2014/WN10/OP-NM-LF/D) for funding the collection of the Polish data, and Rafał Sadkowski for helping with data preparation from the ForBioSensing project. We also thank The Silva Tarouca Research Institute (Czech Republic) for collecting and providing field reference data under an INTER-ACTION project ( LTAUSA18200 ). We also thank the former NERC Airborne Research Facility for their support with airborne data collection, and funding for airborne Lidar data provided by the Australian Department of Agriculture, Fisheries, and Forestry (DAFF). We also thank the Norwegian Agency for Development Cooperation (Norad), although the views expressed in this publication do not necessarily reflect the views of Norad. We also acknowledge DfID and UK Natural Environment Research Council ( NE/P004806/1 ) for collection of field data. The Tanzanian field work for this study was carried out as part of the project “Enhancing the measuring, reporting and verification (MRV) of forests in Tanzania through the application of advanced remote sensing techniques”, funded by the Royal Norwegian Embassy in Tanzania as part of the Norwegian International Climate and Forest Initiative. Finally, data from RAINFOR plots were supported by the Moore Foundation , and SERNANP (Peru) granted research permissions.Armston, Kellner, Hancock, and Dubayah were supported by NASA Contract #NNL 15AA03C to the University of Maryland for the development and execution of the GEDI mission. Duncanson and Minor were supported by a NASA GEDI Science Team Grant NNH20ZDA001N and a NASA Post Doctoral Program fellowship. Saarela was supported through NASA Carbon Monitoring System Grant 80HQTR18T0016, and Healey and Patterson were funded by the GEDI mission through Interagency Agreement RPO201523. We thank the NASA Terrestrial Ecology program for continued support of the GEDI mission, and the University of Maryland for providing independent financial support of the GEDI mission. We also thank NASA for contributing to several lidar data collections used in this study, including from the NASA Carbon Monitoring System (Grant number NNH13AW621, to PI Cohen at the USFS Service). We also gratefully acknowledge the collection and provision of field and airborne data from a wide variety of other sources, including by the Sustainable Landscapes Brazil project supported by the Brazilian Agricultural Research Corporation (EMBRAPA), the US Forest Service, the National Science Foundation (DEB 0939907), Smithsonian Tropical Research Institute, USAID, and the US Department of State, among others. Additional data were acquired from the Terrestrial Ecosystem Research Network (TERN), an Australian Government NCRIS-enabled research infrastructure project, for provision of data used in this analysis, and from the National Ecological Observatory Network (NEON), a program sponsored by the National Science Foundation and operated under cooperative agreement by Battelle. We also thank the National Science and Engineering Research Council of Canada (NSERC), Discovery Grant Program (PI Sanchez-Azofeifa). We also thank the Spanish institutions and programs Instituto Geogr?fico Nacional, Organismo Aut?nomo de Parques Nacionales and Inventario Forestal Nacional for supporting this science with open data. The Council for Scientific and Industrial Research (CSIR) project ?National Woody Vegetation Monitoring System for Ecosystem and Value-added Services? contributed to the collection of South African ALS and field data. We also thank the Sabie Sand Wildtuin, South African National Parks (SANPARKS), the Wits Rural Knowledge Hub and the Bushbuckridge Municipality in South Africa, for support in the South African field data collection. Additional Australian data were collected as part of the SMAPEx project funded by an Australian Research Council Discovery Project (DP0984586). We thank Shell Gabon and the Smithsonian Conservation Biology Institute for funding the Rabi plot in Gabon, which is contribution No. 204 of the Gabon Biodiversity Program. We also acknowledge funding in French Guiana from CNES and ?Investissement d'Avenir? grants managed by Agence Nationale de la Recherche (CEBA, ref. ANR-10-LABX-25-01). We thank the Project LIFE+ ForBioSensing PL ?Comprehensive monitoring of stand dynamics in Bia?owie?a Forest supported with remote sensing techniques" co-funded by Life Plus (contract number LIFE13 ENV/PL/000048) and Poland's National Fund for Environmental Protection and Water Management (contract number 485/2014/WN10/OP-NM-LF/D) for funding the collection of the Polish data, and Rafa? Sadkowski for helping with data preparation from the ForBioSensing project. We also thank The Silva Tarouca Research Institute (Czech Republic) for collecting and providing field reference data under an INTER-ACTION project (LTAUSA18200). We also thank the former NERC Airborne Research Facility for their support with airborne data collection, and funding for airborne Lidar data provided by the Australian Department of Agriculture, Fisheries, and Forestry (DAFF). We also thank the Norwegian Agency for Development Cooperation (Norad), although the views expressed in this publication do not necessarily reflect the views of Norad. We also acknowledge DfID and UK Natural Environment Research Council (NE/P004806/1) for collection of field data. The Tanzanian field work for this study was carried out as part of the project ?Enhancing the measuring, reporting and verification (MRV) of forests in Tanzania through the application of advanced remote sensing techniques?, funded by the Royal Norwegian Embassy in Tanzania as part of the Norwegian International Climate and Forest Initiative. Finally, data from RAINFOR plots were supported by the Moore Foundation, and SERNANP (Peru) granted research permissions.
Andersen, H.-E., Reutebuch, S.E., McGaughey, R.J., A rigorous assessment of tree height measurements obtained using airborne lidar and conventional field methods. Can. J. Remote. Sens., 2006, 10.5589/m06-030.
Andersen, H.-E., Strunk, J., Temesgen, H., Atwood, D., Winterberger, K., Using multilevel remote sensing and ground data to estimate forest biomass resources in remote regions: a case study in the boreal forests of interior Alaska. Can. J. Remote. Sens. 37:6 (2011), 1–16.
Auscover, T., Biomass Plot Library-National collation of tree and shrub inventory data, allometric model predictions of above and below-ground biomass, Australia. 2016.
Avitabile, V., Herold, M., Heuvelink, G.B.M., Lewis, S.L., Phillips, O.L., Asner, G.P., Armston, J., Ashton, P.S., Banin, L., Bayol, N., Berry, N.J., Boeckx, P., de Jong, B.H.J., DeVries, B., Girardin, C.A.J., Kearsley, E., Lindsell, J.A., Lopez-Gonzalez, G., Lucas, R., Malhi, Y., Morel, A., Mitchard, E.T.A., Nagy, L., Qie, L., Quinones, M.J., Ryan, C.M., Ferry, S.J.W., Sunderland, T., Laurin, G.V., Gatti, R.C., Valentini, R., Verbeeck, H., Wijaya, A., Willcock, S., An integrated pan-tropical biomass map using multiple reference datasets. Glob. Chang. Biol. 22 (2016), 1406–1420.
Baccini, A., Laporte, N., Goetz, S.J., Sun, M., Dong, H., A first map of tropical Africa's above-ground biomass derived from satellite imagery. Environ. Res. Lett., 2008, 10.1088/1748-9326/3/4/045011.
Baccini, A., Goetz, S.J., Walker, W.S., Laporte, N.T., Sun, M., Sulla-Menashe, D., Hackler, J., Beck, P.S.A., Dubayah, R., Friedl, M.A., Samanta, S., Houghton, R.A., Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Chang., 2012, 10.1038/nclimate1354.
Baccini, A., Walker, W., Carvalho, L., Farina, M., Sulla-Menashe, D., Houghton, R.A., Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358 (2017), 230–234.
Banin, L., Lewis, S.L., Lopez-Gonzalez, G., Baker, T.R., Quesada, C.A., Chao, K.-J., Burslem, D.F.R.P., Nilus, R., Abu Salim, K., Keeling, H.C., Tan, S., Davies, S.J., Monteagudo Mendoza, A., Vásquez, R., Lloyd, J., Neill, D.A., Pitman, N., Phillips, O.L., Tropical forest wood production: a cross-continental comparison. J. Ecol. 102 (2014), 1025–1037.
Boudreau, J., Nelson, R., Margolis, H., Beaudoin, A., Guindon, L., Kimes, D., Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec. Remote Sens. Environ., 2008, 10.1016/j.rse.2008.06.003.
Carlucci, M.B., Seger, G.D.S., Sheil, D., Amaral, I.L., Chuyong, G.B., Ferreira, L.V., Galatti, U., Hurtado, J., Kenfack, D., Leal, D.C., Lewis, S.L., Lovett, J.C., Marshall, A.R., Martin, E., Mugerwa, B., Munishi, P., Oliveira, Á.C.A., Razafimahaimodison, J.C., Rovero, F., Sainge, M.N., Thomas, D., Pillar, V.D., Duarte, L.D.S., Phylogenetic composition and structure of tree communities shed light on historical processes influencing tropical rainforest diversity. Ecography., 2017, 10.1111/ecog.02104.
Chave, J., Condit, R., Aguilar, S., Hernandez, A., Lao, S., Perez, R., Error propagation and scaling for tropical forest biomass estimates. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359 (2004), 409–420.
Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M.S., Delitti, W.B.C., Duque, A., Eid, T., Fearnside, P.M., Goodman, R.C., Henry, M., Martínez-Yrízar, A., Mugasha, W.A., Muller-Landau, H.C., Mencuccini, M., Nelson, B.W., Ngomanda, A., Nogueira, E.M., Ortiz-Malavassi, E., Pélissier, R., Ploton, P., Ryan, C.M., Saldarriaga, J.G., Vieilledent, G., Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Chang. Biol. 20 (2014), 3177–3190.
Clark, D.B., Kellner, J.R., Tropical forest biomass estimation and the fallacy of misplaced concreteness. J. Veg. Sci. 23 (2012), 1191–1196.
Coomes, D.A., Dalponte, M., Jucker, T., Asner, G.P., Banin, L.F., David, F.R., Lewis, S.L., Nilus, R., Phillips, O.L., Phua, M.-H., Qie, L., Area-based vs tree-centric approaches to mapping forest carbon in Southeast Asian forests from airborne laser scanning data. Remote Sens. Environ., 2017, 10.1016/j.rse.2017.03.017.
Coops, N.C., Hilker, T., Wulder, M.A., St-Onge, B., Newnham, G., Siggins, A. (Tony), Trofymow, J.A., Estimating canopy structure of Douglas-fir forest stands from discrete-return LiDAR. Trees., 2007, 10.1007/s00468-006-0119-6.
Corbera, E., Schroeder, H., Governing and implementing REDD+. Environ. Sci. Pol. 14 (2011), 89–99.
Corlett, R.T., Primack, R.B., Tropical rainforests and the need for cross-continental comparisons. Trends Ecol. Evol. 21 (2006), 104–110.
Corte, A.P.D., Souza, D.V., Rex, F.E., Sanquetta, C.R., Mohan, M., Silva, C.A., Zambrano, A.M.A., Prata, G., de Almeida, D.R.A., Trautenmüller, J.W., Klauberg, C., de Moraes, A., Sanquetta, M.N., Wilkinson, B., Broadbent, E.N., Forest inventory with high-density UAV-Lidar: machine learning approaches for predicting individual tree attributes. Comput. Electron. Agric., 2020, 10.1016/j.compag.2020.105815.
Diaz, S., Cabido, M., Plant functional types and ecosystem function in relation to global change. J. Veg. Sci., 1997, 10.1111/j.1654-1103.1997.tb00842.x.
Disney, M., Burt, A., Wilkes, P., Armston, J., Duncanson, L., New 3D measurements of large redwood trees for biomass and structure. Sci. Rep., 10, 2020, 16721.
Drake, J.B., Knox, R.G., Dubayah, R.O., Clark, D.B., Condit, R., Bryan Blair, J., Hofton, M., Above-ground biomass estimation in closed canopy Neotropical forests using lidar remote sensing: factors affecting the generality of relationships. Glob. Ecol. Biogeogr., 2003, 10.1046/j.1466-822x.2003.00010.x.
Dubayah, R., Blair, J.B., Goetz, S., Fatoyinbo, L., Hansen, M., Healey, S., Hofton, M., Hurtt, G., Kellner, J., Luthcke, S., Armston, J., Tang, H., Duncanson, L., Hancock, S., Jantz, P., Marselis, S., Patterson, P.L., Qi, W., Silva, C., The global ecosystem dynamics investigation: high-resolution laser ranging of the Earth's forests and topography. Sci. Remote Sens., 2020, 10.1016/j.srs.2020.100002.
Duncanson, L.I., Niemann, K.O., Wulder, M.A., Estimating forest canopy height and terrain relief from GLAS waveform metrics. Remote Sens. Environ., 2010, 10.1016/j.rse.2009.08.018.
Duncanson, L., Neuenschwander, A., Hancock, S., Thomas, N., Fatoyinbo, T., Simard, M., Silva, C.A., Armston, J., Luthcke, S.B., Hofton, M., Kellner, J.R., Dubayah, R., Biomass estimation from simulated GEDI, ICESat-2 and NISAR across environmental gradients in Sonoma County, California. Remote Sens. Environ., 242, 2020, 111779, 10.1016/j.rse.2020.111779.
Duncanson, L., Armston, J., Disney, M., Avitabile, V., Barbier, N., Calders, K., Carter, S., Chave, J., Herold, M., MacBean, N., et al. Aboveground Woody Biomass Product Validation Good Practices Protocol. 2021.
Ene, L.T., Næsset, E., Gobakken, T., Mauya, E.W., Bollandsås, O.M., Gregoire, T.G., Ståhl, G., Zahabu, E., Large-scale estimation of aboveground biomass in miombo woodlands using airborne laser scanning and national forest inventory data. Remote Sens. Environ. 186 (2016), 626–636.
Enquist, B.J., West, G.B., Brown, J.H., Extensions and evaluations of a general quantitative theory of forest structure and dynamics. Proc. Natl. Acad. Sci. U. S. A. 106 (2009), 7046–7051.
Fatoyinbo, T., Armston, J., Simard, M., Saatchi, S., Denbina, M., Lavalle, M., Hofton, M., Tang, H., Marselis, S., Pinto, N., Hancock, S., Hawkins, B., Duncanson, L., Blair, B., Hansen, C., Lou, Y., Dubayah, R., Hensley, S., Silva, C., Poulsen, J.R., Labrière, N., Barbier, N., Jeffery, K., Kenfack, D., Herve, M., Bissiengou, P., Alonso, A., Moussavou, G., White, L.T.J., Lewis, S., Hibbard, K., The NASA AfriSAR campaign: airborne SAR and lidar measurements of tropical forest structure and biomass in support of current and future space missions. Remote Sens. Environ., 264, 2021, 112533.
Feldpausch, T.R., Lloyd, J., Lewis, S.L., Brienen, R.J.W., Gloor, M., Monteagudo Mendoza, A., Lopez-Gonzalez, G., Banin, L., Abu Salim, K., Affum-Baffoe, K., Alexiades, M., Almeida, S., Amaral, I., Andrade, A., Aragao, L.E.O., Araujo Murakami, A., Arets, E.J.M.M., Arroyo, L., Aymard, C.G.A., Baker, T.R., Banki, O.S., Berry, N.J., Cardozo, N., Chave, J., Comiskey, J.A., Alvarez, E., de Oliveira, A., Di Fiore, A., Djagbletey, G., Domingues, T.F., Erwin, T.L., Fearnside, P.M., Franca, M.B., Freitas, M.A., Higuchi, N., Honorio, C.E., Iida, Y., Jimenez, E., Kassim, A.R., Killeen, T.J., Laurance, W.F., Lovett, J.C., Malhi, Y., Marimon, B.S., Marimon-Junior, B.H., Lenza, E., Marshall, A.R., Mendoza, C., Metcalfe, D.J., Mitchard, E.T.A., Neill, D.A., Nelson, B.W., Nilus, R., Nogueira, E.M., Parada, A., Peh, K.S.-H., Pena Cruz, A., Penuela, M.C., Pitman, N.C.A., Prieto, A., Quesada, C.A., Ramırez, F., Ramırez-Angulo, H., Reitsma, J.M., Rudas, A., Saiz, G., Salomao, R.P., Schwarz, M., Silva, N., Silva-Espejo, J.E., Silveira, M., Sonke, B., Stropp, J., Taedoumg, H.E., Tan, S., ter Steege, H., Terborgh, J., Torello-Raventos, M., van der Heijden, G.M.F., Vasquez, R., Vilanova, E., Vos, V.A., White, L., Willcock, S., Woell, H., Phillips, O.L., Tree height integrated into pantropical forest biomass estimates. Biogeosciences 9 (2012), 3381–3403.
Ferraz, A., Saatchi, S., Mallet, C., Jacquemoud, S., Gil, G., Silva, C.A., Soares, P., Tomé, M., Pereira, L., Airborne lidar estimation of aboveground forest biomass in the absence of field inventory. Remote Sens., 8, 2016, 653.
Ferraz, A., Saatchi, S., Xu, L., Hagen, S., Chave, J., Yu, Y., Meyer, V., Garcia, M., Silva, C., Roswintiart, O., Samboko, A., Sist, P., Walker, S., Pearson, T.R.H., Wijaya, A., Sullivan, F.B., Rutishauser, E., Hoekman, D., Ganguly, S., Carbon storage potential in degraded forests of Kalimantan, Indonesia. Environ. Res. Lett., 13, 2018, 095001.
Ferry, B., Morneau, F., Bontemps, J.-D., Blanc, L., Freycon, V., Higher treefall rates on slopes and waterlogged soils result in lower stand biomass and productivity in a tropical rain forest. J. Ecol., 2010, 10.1111/j.1365-2745.2009.01604.x.
Foody, G.M., Boyd, D.S., Cutler, M.E.J., Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sens. Environ., 2003, 10.1016/s0034-4257(03)00039-7.
Friedl, M.A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., Huang, X., MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ., 2010, 10.1016/j.rse.2009.08.016.
Friedlingstein, P., Jones, M.W., O'Sullivan, M., Andrew, R.M., Hauck, J., Peters, G.P., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., Bakker, D.C.E., Canadell, J.G., Ciais, P., Jackson, R.B., Anthoni, P., Barbero, L., Bastos, A., Bastrikov, V., Becker, M., Bopp, L., Buitenhuis, E., Chandra, N., Chevallier, F., Chini, L.P., Currie, K.I., Feely, R.A., Gehlen, M., Gilfillan, D., Gkritzalis, T., Goll, D.S., Gruber, N., Gutekunst, S., Harris, I., Haverd, V., Houghton, R.A., Hurtt, G., Ilyina, T., Jain, A.K., Joetzjer, E., Kaplan, J.O., Kato, E., Klein Goldewijk, K., Korsbakken, J.I., Landschützer, P., Lauvset, S.K., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi, D., Marland, G., McGuire, P.C., Melton, J.R., Metzl, N., Munro, D.R., Nabel, J.E.M.S., Nakaoka, S.-I., Neill, C., Omar, A.M., Ono, T., Peregon, A., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Séférian, R., Schwinger, J., Smith, N., Tans, P.P., Tian, H., Tilbrook, B., Tubiello, F.N., Van der Werf, G.R., Wiltshire, A.J., Zaehle, S., Global carbon budget 2019. Earth Syst. Sci. Data 11 (2019), 1783–1838.
Friis, I., Balslev, H., Plant diversity and complexity patterns: local, regional, and global dimensions. Biologiske Skrifter, 55, 2005.
Gibbs, H.K., Brown, S., Niles, J.O., Foley, J.A., Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ. Res. Lett., 2007, 10.1088/1748-9326/2/4/045023.
Gleason, C.J., Im, J., Forest biomass estimation from airborne LiDAR data using machine learning approaches. Remote Sens. Environ., 2012, 10.1016/j.rse.2012.07.006.
Goetz, S.J., Hansen, M., Houghton, R.A., Walker, W., Laporte, N., Busch, J., Measurement and monitoring needs, capabilities and potential for addressing reduced emissions from deforestation and forest degradation under REDD+. Environ. Res. Lett., 10, 2015, 123001.
Hancock, S., Disney, M., Muller, J.-P., Lewis, P., Foster, M., A threshold insensitive method for locating the forest canopy top with waveform lidar. Remote Sens. Environ., 2011, 10.1016/j.rse.2011.07.012.
Hancock, S., Armston, J., Li, Z., Gaulton, R., Lewis, P., Disney, M., Mark Danson, F., Strahler, A., Schaaf, C., Anderson, K., Gaston, K.J., Waveform lidar over vegetation: an evaluation of inversion methods for estimating return energy. Remote Sens. Environ., 2015, 10.1016/j.rse.2015.04.013.
Hancock, S., Armston, J., Hofton, M., Sun, X., Tang, H., Duncanson, L.I., Kellner, J.R., Dubayah, R., The GEDI simulator: a large-footprint waveform lidar simulator for calibration and validation of spaceborne missions. Earth Space Sci. 6 (2019), 294–310.
Hansen, E.H., Bollandsås, Gobakken Terje, Zahabu, E., Næsset, E., Modeling aboveground biomass in dense tropical submontane rainforest using airborne laser scanner data. Remote Sens. 7 (2015), 788–807.
Hansen, E., Ene, L., Mauya, E., Patočka, Z., Mikita, T., Gobakken, T., Næsset, E., Comparing empirical and semi-empirical approaches to forest biomass modelling in different biomes using airborne laser scanner data. Forests., 2017, 10.3390/f8050170.
Healey, S.P., Yang, Z., Gorelick, N., Ilyushchenko, S., Highly local model calibration with a new GEDI LiDAR asset on Google Earth Engine reduces landsat forest height signal saturation. Remote Sens., 12(17), 2020, 2840.
Hernando, A., Puerto, L., Mola-Yudego, B., Manzanera, J.A., García-Abril, A., Maltamo, M., Valbuena, R., Estimation of forest biomass components using airborne LiDAR and multispectral sensors. iForest - Biogeosci. Forestry, 2019, 10.3832/ifor2735-012.
Houghton, R.A., House, J.I., Pongratz, J., Werf, G.R. van der, DeFries, R.S., Hansen, M.C., Le Quéré, C., Ramankutty, N., 2012. Carbon emissions from land use and land-cover change. Biogeosciences 9, 5125–5142.
Huang, W., Sun, G., Dubayah, R., Cook, B., Montesano, P., Ni, W., Zhang, Z., Mapping biomass change after forest disturbance: Applying LiDAR footprint-derived models at key map scales. Remote Sens. Environ., 2013, 10.1016/j.rse.2013.03.017.
Hudak, A.T., Bright, B.C., Pokswinski, S.M., Louise Loudermilk, E., O'Brien, J.J., Hornsby, B.S., Klauberg, C., Silva, C.A., Mapping forest structure and composition from low-density LiDAR for informed forest, fuel, and fire management at Eglin Air Force Base, Florida, USA. Can. J. Remote. Sens., 2016, 10.1080/07038992.2016.1217482.
Huete, A., Liu, H.Q., Batchily, K., van Leeuwen, W., A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 59 (1997), 440–451.
Hurtt, G.C., Pacala, S.W., Moorcroft, P.R., Caspersen, J., Shevliakova, E., Houghton, R.A., Moore, B., Projecting the Future of the U.S. Carbon Sink. Proceedings of the National Academy of Sciences, 2002, 10.1073/pnas.012249999.
Kearsley, E., de Haulleville, T., Hufkens, K., Kidimbu, A., Toirambe, B., Baert, G., Huygens, D., Kebede, Y., Defourny, P., Bogaert, J., Beeckman, H., Steppe, K., Boeckx, P., Verbeeck, H., Conventional tree height-diameter relationships significantly overestimate aboveground carbon stocks in the Central Congo Basin. Nat. Commun., 4, 2013, 2269.
Lefsky, M.A., Keller, M., Pang, Y., De Camargo, P.B., Hunter, M.O., Revised method for forest canopy height estimation from Geoscience Laser Altimeter System waveforms. J. Appl. Remote. Sens., 1, 2007, 013537.
Los, S.O., Rosette, J.A.B., Kljun, N., North, P.R.J., Chasmer, L., Suárez, J.C., Hopkinson, C., Hill, R.A., van Gorsel, E., Mahoney, C., Berni, J.A.J., Vegetation height and cover fraction between 60° S and 60° N from ICESat GLAS data. Geosci. Model Dev. 5 (2012), 413–432.
Lucas, R.M., Lee, A.C., Bunting, P.J., Retrieving forest biomass through integration of CASI and LiDAR data. Int. J. Remote Sens., 2008, 10.1080/01431160701736497.
Luckman, A., Baker, J., Honzák, M., Lucas, R., Tropical forest biomass density estimation using JERS-1 SAR: seasonal variation, confidence limits, and application to image mosaics. Remote Sens. Environ., 1998, 10.1016/s0034-4257(97)00133-8.
Mahoney, C., Kljun, N., Los, S.O., Chasmer, L., Hacker, J.M., Hopkinson, C., North, P.R.J., Rosette, J.A.B., van Gorsel, E., Slope estimation from ICESat/GLAS. Remote Sens. 6 (2014), 10051–10069, 10.3390/rs61010051.
Margolis, H.A., Nelson, R.F., Montesano, P.M., Beaudoin, A., Sun, G., Andersen, H.-E., Wulder, M.A., Combining satellite lidar, airborne lidar, and ground plots to estimate the amount and distribution of aboveground biomass in the boreal forest of North America. Can. J. For. Res. 45 (2015), 838–855.
Mauya, E.W., Hansen, E.H., Gobakken, T., Bollandsås, O.M., Malimbwi, R.E., Næsset, E., Effects of field plot size on prediction accuracy of aboveground biomass in airborne laser scanning-assisted inventories in tropical rain forests of Tanzania. Carbon Balance Manag., 2015, 10.1186/s13021-015-0021-x.
Meyer, V., Saatchi, S., Clark, D.B., Keller, M., Grégoire, V., Ferraz, A., Espírito-Santo, F., d'Oliveira, M., Kaki, D., Chave, J., Canopy area of large trees explains aboveground biomass variations across neotropical forest landscapes. Biogeosciences 15 (2018), 3377–3390.
Meyer, V., Saatchi, S., Ferraz, A., Xu, L., Duque, A., García, M., Chave, J., Forest degradation and biomass loss along the Chocó region of Colombia. Carbon Balance Manag., 14, 2019, 2.
Mitchard, E.T.A., Saatchi, S.S., Woodhouse, I.H., Nangendo, G., Ribeiro, N.S., Williams, M., Ryan, C.M., Lewis, S.L., Feldpausch, T.R., Meir, P., Using satellite radar backscatter to predict above-ground woody biomass: A consistent relationship across four different African landscapes. Geophys. Res. Lett., 2009, 10.1029/2009gl040692.
Næsset, E., Gobakken, T., Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser. Remote Sens. Environ. 112 (2008), 3079–3090.
Næsset, E., Bollandsås, O.M., Gobakken, T., Gregoire, T.G., Ståhl, G., Model-assisted estimation of change in forest biomass over an 11year period in a sample survey supported by airborne LiDAR: A case study with post-stratification to provide “activity data.”. Remote Sens. Environ., 2013, 10.1016/j.rse.2012.10.008.
Næsset, E., Bollandsås, O.M., Gobakken, T., Solberg, S., McRoberts, R.E., The effects of field plot size on model-assisted estimation of aboveground biomass change using multitemporal interferometric SAR and airborne laser scanning data. Remote Sens. Environ. 168 (2015), 252–264.
Naidoo, L., Mathieu, R., Main, R., Kleynhans, W., Wessels, K., Asner, G., Leblon, B., Savannah woody structure modelling and mapping using multi-frequency (X-, C- and L-band) Synthetic Aperture Radar data. ISPRS J. Photogramm. Remote Sens. 105 (2015), 234–250.
Ni-Meister, W., Lee, S., Strahler, A.H., Woodcock, C.E., Schaaf, C., Yao, T., Jon Ranson, K., Sun, G., Bryan Blair, J., Assessing general relationships between aboveground biomass and vegetation structure parameters for improved carbon estimate from lidar remote sensing. J. Geophys. Res. Biogeosci., 2010, 10.1029/2009jg000936.
North, P.R.J., Rosette, J.A.B., Suárez, J.C., Los, S.O., A Monte Carlo radiative transfer model of satellite waveform LiDAR. Int. J. Remote Sens., 2010, 10.1080/01431160903380664.
Potapov, P., Li, X., Hernandez-Serna, A., Tyukavina, A., Hansen, M.C., Kommareddy, A., Pickens, A., Turubanova, S., Tang, H, Silva, C.E., Armston, J., Dubayah, R., Blair, J.B., Hofton, M., Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ., 253, 2021, 112165.
Poulter, B., Ciais, P., Hodson, E., Lischke, H., Maignan, F., Plummer, S., Zimmermann, N.E., Plant functional type mapping for earth system models. Geosci. Model Dev., 2011, 10.5194/gmd-4-993-2011.
Powell, S.L., Cohen, W.B., Healey, S.P., Kennedy, R.E., Moisen, G.G., Pierce, K.B., Ohmann, J.L., Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: a comparison of empirical modeling approaches. Remote Sens. Environ. 114 (2010), 1053–1068.
Réjou-Méchain, M., Barbier, N., Couteron, P., Ploton, P., Vincent, G., Herold, M., Mermoz, S., Saatchi, S., Chave, J., de Boissieu, F., Féret, J.-B., Takoudjou, S.M., Pélissier, R., Upscaling forest biomass from field to satellite measurements: sources of errors and ways to reduce them. Surv. Geophys., 2019, 10.1007/s10712-019-09532-0.
Rodríguez-Veiga, P., Quegan, S., Carreiras, J., Persson, H.J., Fransson, J.E.S., Hoscilo, A., Ziółkowski, D., Stereńczak, K., Lohberger, S., Stängel, M., Berninger, A., Siegert, F., Avitabile, V., Herold, M., Mermoz, S., Bouvet, A., Le Toan, T., Carvalhais, N., Santoro, M., Cartus, O., Rauste, Y., Mathieu, R., Asner, G.P., Thiel, C., Pathe, C., Schmullius, C., Seifert, F.M., Tansey, K., Balzter, H., Forest biomass retrieval approaches from earth observation in different biomes. Int. J. Appl. Earth Obs. Geoinf. 77 (2019), 53–68.
Saarela, S., Holm, S., Healey, S., Andersen, H.-E., Petersson, H., Prentius, W., Patterson, P., Næsset, E., Gregoire, T., Ståhl, G., Generalized hierarchical model-based estimation for aboveground biomass assessment using GEDI and Landsat Data. Remote Sens., 2018, 10.3390/rs10111832.
Saarela, S., Holm, S., Healey, S.P., Patterson, P.L., Duncanson, L.I., Armston, J.D., Kellner, J.K., Gobakken, T., Næsset, E., Ekström, M., Ståhl, G., Effects of multicollinearity in model-based inference predicting aboveground biomass using NASA's GEDI and Landsat missions (research note). Silva Fennica., 2021 In press.
Saatchi, S.S., Harris, N.L., Brown, S., Lefsky, M., Mitchard, E.T.A., Salas, W., Zutta, B.R., Buermann, W., Lewis, S.L., Hagen, S., Petrova, S., White, L., Silman, M., Morel, A., Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci., 2011, 10.1073/pnas.1019576108.
Silva, C.A., Duncanson, L., Hancock, S., Neuenschwander, A., Thomas, N., Hofton, M., Fatoyinbo, L., Simard, M., Marshak, C.Z., Armston, J., Lutchke, S., Dubayah, R., Fusing simulated GEDI, ICESat-2 and NISAR data for regional aboveground biomass mapping. Remote Sens. Environ., 2021, 10.1016/j.rse.2020.112234.
Simard, M., Pinto, N., Fisher, J.B., Baccini, A., Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res., 116, 2011, 10.1029/2011jg001708.
Simard, M., Fatoyinbo, L., Smetanka, C., Rivera-Monroy, V.H., Castañeda-Moya, E., Thomas, N., Van der Stocken, T., Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nat. Geosci. 12 (2018), 40–45.
Smith, W.B., Forest inventory and analysis: a national inventory and monitoring program. Environ. Pollut. 116 (2002), S233–S242.
Snowdon, P., A ratio estimator for bias correction in logarithmic regressions. Can. J. For. Res. 21 (1991), 720–724.
Sun, G., Ranson, K., Kimes, D., Blair, J., Kovacs, K., Forest vertical structure from GLAS: An evaluation using LVIS and SRTM data. Remote Sens. Environ., 2008, 10.1016/j.rse.2006.09.036.
Sun, G., Jon Ranson, K., Guo, Z., Zhang, Z., Montesano, P., Kimes, D., Forest biomass mapping from lidar and radar synergies. Remote Sens. Environ., 2011, 10.1016/j.rse.2011.03.021.
Swatantran, A., Dubayah, R., Roberts, D., Hofton, M., Bryan Blair, J., Mapping biomass and stress in the Sierra Nevada using lidar and hyperspectral data fusion. Remote Sens. Environ., 2011, 10.1016/j.rse.2010.08.027.
Tang, H., Armston, J., Hancock, S., Marselis, S., Goetz, S., Dubayah, R., Characterizing global forest canopy cover distribution using spaceborne lidar. Remote. Sens. Environ., 231, 2019, 111262.
Tang, H., Dubayah, R., Swatantran, A., Hofton, M., Sheldon, S., Clark, D.B., Blair, B., Retrieval of vertical LAI profiles over tropical rain forests using waveform lidar at La Selva, Costa Rica. Remote Sens. Environ., 2012, 10.1016/j.rse.2012.05.005.
Tang, H., Ma, L., Lister, A., O'Neill-Dunne, J., Lu, J., Lamb, R.L., Dubayah, R., Hurtt, G., High-resolution forest carbon mapping for climate mitigation baselines over the RGGI region, USA. Environ. Res. Lett., 16, 2021, 035011.
Tubiello, F.N., Pekkarinen, A., Marklund, L., Wanner, N., Conchedda, G., Federici, S., Rossi, S., Grassi, G., Carbon emissions and removals by forests: New estimates 1990–2020. Earth Syst. Sci. Data., 2020, 10.5194/essd-2020-203.
Valbuena, R., Hernando, A., Manzanera, J.A., Görgens, E.B., Almeida, D.R.A., Mauro, F., García-Abril, A., Coomes, D.A., Enhancing of accuracy assessment for forest above-ground biomass estimates obtained from remote sensing via hypothesis testing and overfitting evaluation. Ecol. Model. 366 (2017), 15–26.
Vorster, A.G., Evangelista, P.H., Stovall, A.E.L., Ex, S., Variability and uncertainty in forest biomass estimates from the tree to landscape scale: the role of allometric equations. Carbon Balance Manag., 15, 2020, 8.
Wood, S.N., Generalized Additive Models: An Introduction with R. Second edition, 2017, CRC Press.
Xu, L., Saatchi, S.S., Shapiro, A., Meyer, V., Ferraz, A., Yang, Y., Bastin, J.-F., Banks, N., Boeckx, P., Verbeeck, H., Lewis, S.L., Muanza, E.T., Bongwele, E., Kayembe, F., Mbenza, D., Kalau, L., Mukendi, F., Ilunga, F., Ebuta, D., Spatial distribution of carbon stored in forests of the Democratic Republic of Congo. Sci. Rep., 7, 2017, 15030.
Zhao, K., Popescu, S., Nelson, R., Lidar remote sensing of forest biomass: a scale-invariant estimation approach using airborne lasers. Remote Sens. Environ., 2009, 10.1016/j.rse.2008.09.009.
Zolkos, S.G., Goetz, S.J., Dubayah, R., A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing. Remote Sens. Environ., 2013, 10.1016/j.rse.2012.10.017.